Giải bài tập Bài 5: Góc giữa đường thẳng và mặt phẳng. Góc nhị diện – Chương 8 – Toán 11 – Chân trời sáng tạo

Giải bài tập Bài 5: Góc giữa đường thẳng và mặt phẳng. Góc nhị diện – Chương 8 – Toán 11 – Chân trời sáng tạo

Hoạt động 1

Cho đường thẳng \(a\) và mặt phẳng \(\left( P \right)\).

a) Trong trường hợp \(a\) vuông góc với \(\left( P \right)\), tìm góc giữa \(a\) và một đường thẳng \(b\) tuỳ ý trong \(\left( P \right)\).

b) Trong trường hợp \(a\) không vuông góc với \(\left( P \right)\), tìm góc giữa \(a\) và đường thẳng \(a’\) là hình chiếu vuông góc của \(a\) trên \(\left( P \right)\).

Phương pháp giải:

Sử dụng tính chất: Đường thẳng vuông góc với mặt phẳng thì nó vuông góc với mọi đường thẳng nằm trong mặt phẳng.

Lời giải chi tiết:

a) Ta có:

\(\left. \begin{array}{l}a \bot \left( P \right)\\b \subset \left( P \right)\end{array} \right\} \Rightarrow a \bot b \Rightarrow \left( {a,b} \right) = {90^ \circ }\)

b) Lấy \(A \in a\). Gọi \(O = a \cap \left( P \right)\). Dựng \(AH \bot a’\left( {H \in a’} \right)\).

Ta có: \(\left( {a,a’} \right) = \left( {AO,OH} \right) = \widehat {AOH}\)

Thực hành 1

Cho hình lập phương \(ABCD.A’B’C’D’\). Tính góc giữa các đường thẳng sau đây với mặt phẳng \(\left( {ABCD} \right)\):

a) \(AA’\);

b) \(BC’\);

c) \(A’C\).

Phương pháp giải:

Cách tính góc giữa đường thẳng và mặt phẳng: Tính góc giữa đường thẳng đó và hình chiếu của nó lên mặt phẳng.

Lời giải chi tiết:

a) \(AA’ \bot \left( {ABCD} \right) \Rightarrow \left( {AA’,\left( {ABCD} \right)} \right) = {90^ \circ }\).

b) \(CC’ \bot \left( {ABCD} \right)\)

\( \Rightarrow \left( {BC’,\left( {ABCD} \right)} \right) = \left( {BC’,BC} \right) = \widehat {CBC’} = {45^ \circ }\)

c) \(AA’ \bot \left( {ABCD} \right)\)

\( \Rightarrow \left( {A’C,\left( {ABCD} \right)} \right) = \left( {A’C,AC} \right) = \widehat {ACA’}\)

\(\begin{array}{l}AC = AB\sqrt 2 = AA’\sqrt 2 \Rightarrow \tan \widehat {ACA’} = \frac{{AA’}}{{AC}} = \frac{{AA’}}{{AA’\sqrt 2 }} = \frac{{\sqrt 2 }}{2}\\ \Rightarrow \widehat {ACA’} \approx 35,{26^ \circ }\end{array}\)

Vậy \(\left( {A’C,\left( {ABCD} \right)} \right) \approx 35,{26^ \circ }\)

Vận dụng 1

Một tấm ván hình chữ nhật \(ABCD\) được dùng làm mặt phẳng nghiêng để kéo một vật lên khỏi hố sâu 2 m. Cho biết \(AB = 1\,m,AD = 3,5{\rm{ }}m\). Tính góc giữa đường thẳng \(BD\) và đáy hồ.

Phương pháp giải:

Cách tính góc giữa đường thẳng và mặt phẳng: Tính góc giữa đường thẳng đó và hình chiếu của nó lên mặt phẳng.

Lời giải chi tiết:

\(DK \bot \left( {ABHK} \right) \Rightarrow \left( {B{\rm{D}},\left( {ABHK} \right)} \right) = \left( {B{\rm{D}},BK} \right) = \widehat {DBK}\)

\(DK = CH = 2,AK = \sqrt {A{{\rm{D}}^2} – D{K^2}} = \frac{{\sqrt {33} }}{2},KB = \sqrt {A{K^2} + A{B^2}} = \frac{{\sqrt {37} }}{2}\)

\(\tan \widehat {DBK} = \frac{{DK}}{{KB}} = \frac{4}{{\sqrt {37} }} \Rightarrow \widehat {DBK} \approx 33,{3^ \circ }\)

Vậy góc giữa đường thẳng \(BD\) và đáy hồ bằng \(33,{3^ \circ }\).


Hoạt động 2

Cho hai mặt phẳng \(\left( P \right)\) và \(\left( Q \right)\) cắt nhau theo giao tuyến \(d\). Hãy gọi tên các nửa mặt phẳng có chung bờ \(d\). Các nửa mặt phẳng này chia không gian thành bao nhiêu phần?

Phương pháp giải:

Quan sát hình ảnh và trả lời câu hỏi.

Lời giải chi tiết:

Các nửa mặt phẳng có chung bờ \(d\) là: \(\left( {{P_1}} \right),\left( {{P_2}} \right),\left( {{Q_1}} \right),\left( {{Q_2}} \right)\).

Các nửa mặt phẳng này chia không gian thành 4 phần.

Hoạt động 3

Cho góc nhị diện \(\left[ {{P_1},d,{Q_1}} \right]\). Gọi \(O\) là một điểm tuỳ ý trên \(d\). \(Ox\) là tia nằm trong \(\left( P \right)\) và vuông góc với \(d\), \(Oy\) là tia nằm trong \(\left( Q \right)\) và vuông góc với \(d\) (Hình 6).

a) Nêu nhận xét về vị trí tương đối giữa \(d\) và \(mp\left( {Ox,Oy} \right)\).

b) Nêu nhận xét về số đo của góc \(xOy\) khi \(O\) thay đổi trên \(d\).

Phương pháp giải:

Sử dụng định lí: Nếu đường thẳng \(d\) vuông góc với hai đường thẳng cắt nhau \(a\) và \(b\) cùng nằm trong mặt phẳng \(\left( \alpha \right)\) thì \(d \bot \left( \alpha \right)\).

Lời giải chi tiết:

a) Ta có:

\(\left. \begin{array}{l}d \bot Ox\\d \bot Oy\end{array} \right\} \Rightarrow d \bot mp\left( {Ox,Oy} \right)\)

b) Số đo của góc \(xOy\) không đổi khi \(O\) thay đổi trên \(d\).

Thực hành 2

Cho hình chóp tứ giác đều \(S.ABCD\) với \(O\) là tâm của đáy và có tất cả các cạnh đều bằng \(a\). Xác định và tính góc phẳng nhị diện:

a) \(\left[ {S,BC,O} \right]\);

b) \(\left[ {C,SO,B} \right]\).

Phương pháp giải:

‒ Cách xác định góc phẳng nhị diện \(\left[ {A,d,B} \right]\): Dựng mặt phẳng \(\left( P \right)\) vuông góc với \(d\), gọi \(a,a’\) lần lượt là giao tuyến của \(\left( P \right)\) với hai nửa mặt phẳng chứa \(A,B\), khi đó \(\left[ {A,d,B} \right] = \left( {a,a’} \right)\).

Lời giải chi tiết:

a) Gọi \(H\) là trung điểm của \(BC\).

\(\Delta SBC\) đều \( \Rightarrow SH \bot BC\)

\(\Delta OBC\) vuông cân tại \(O \Rightarrow OH \bot BC\)

Vậy \(\widehat {SHO}\) là góc phẳng nhị diện \(\left[ {S,BC,O} \right]\).

Ta có: \(O\) là trung điểm của \(BD\)

\(H\) là trung điểm của \(BC\)

\( \Rightarrow OH\) là đường trung bình của \(\Delta BC{\rm{D}}\)

\( \Rightarrow OH = \frac{1}{2}CD = \frac{a}{2}\)

\(AC = \sqrt {A{B^2} + B{C^2}} = a\sqrt 2 \Rightarrow OC = \frac{{AC}}{2} = \frac{{a\sqrt 2 }}{2}\)

\(\Delta SOH\) vuông tại \(O\) có: \(SO = \sqrt {S{C^2} – O{C^2}} = \frac{{a\sqrt 2 }}{2}\)

\(\tan \widehat {SHO} = \frac{{SO}}{{OH}} = \sqrt 2 \Rightarrow \widehat {SHO} \approx 54,{7^ \circ }\)

b) Ta có:

\(\begin{array}{l}SO \bot \left( {ABCD} \right) \Rightarrow SO \bot OB\\SO \bot \left( {ABCD} \right) \Rightarrow SO \bot OC\end{array}\)

Vậy \(\widehat {BOC}\) là góc phẳng nhị diện \(\left[ {C,SO,B} \right]\).

\(ABC{\rm{D}}\) là hình vuông \( \Rightarrow \widehat {BOC} = {90^ \circ }\).

Vận dụng 2

Cho biết kim tự tháp Memphis tại bang Tennessee (Mỹ) có dạng hình chóp tứ giác đều với chiều cao 98 m và cạnh đáy 180 m. Tính số đo góc nhị diện tạo bởi mặt bên và mặt đáy.

Phương pháp giải:

Cách xác định góc nhị diện \(\left[ {{P_1},d,{Q_1}} \right]\)

Bước 1: Xác định \(c = \left( {{P_1}} \right) \cap \left( {{Q_1}} \right)\).

Bước 2: Tìm mặt phẳng \(\left( R \right) \supset c\).

Bước 3: Tìm \(p = \left( R \right) \cap \left( {{P_1}} \right),q = \left( R \right) \cap \left( {{Q_1}} \right),O = p \cap q,M \in p,N \in q\).

Khi đó \(\left[ {{P_1},d,{Q_1}} \right] = \widehat {MON}\).

Lời giải chi tiết:

Mô hình hoá kim tự tháp bằng chóp tứ giác đều \(S.ABCD\) với \(O\) là tâm của đáy. Vậy \(AB = 180,SO = 98\)

Gọi \(H\) là trung điểm của \(BC\).

\(\Delta SBC\) đều \( \Rightarrow SH \bot BC\)

\(\Delta OBC\) vuông cân tại \(O \Rightarrow OH \bot BC\)

Vậy \(\widehat {SHO}\) là góc nhị diện tạo bởi mặt bên và mặt đáy.

Ta có: \(O\) là trung điểm của \(BD\)

\(H\) là trung điểm của \(BC\)

\( \Rightarrow OH\) là đường trung bình của \(\Delta BC{\rm{D}}\)

\( \Rightarrow OH = \frac{1}{2}CD = 90\)

\(\tan \widehat {SHO} = \frac{{SO}}{{OH}} = \frac{{49}}{{45}} \Rightarrow \widehat {SHO} \approx 47,{4^ \circ }\)

Vậy số đo góc nhị diện tạo bởi mặt bên và mặt đáy là \(47,{4^ \circ }\).


Bài 1 trang 85 :

Cho tứ diện đều \(ABCD\). Vẽ hình bình hành \(BCED\).

a) Tìm góc giữa đường thẳng \(AB\) và \(\left( {BCD} \right)\).

b) Tim góc phẳng nhị diện \(\left[ {A,CD,B} \right];\left[ {A,CD,E} \right]\).

Phương pháp giải

‒ Cách tính góc giữa đường thẳng và mặt phẳng: Tính góc giữa đường thẳng đó và hình chiếu của nó lên mặt phẳng.

‒ Cách xác định góc phẳng nhị diện \(\left[ {A,d,B} \right]\): Dựng mặt phẳng \(\left( P \right)\) vuông góc với \(d\), gọi \(a,a’\) lần lượt là giao tuyến của \(\left( P \right)\) với hai nửa mặt phẳng chứa \(A,B\), khi đó \(\left[ {A,d,B} \right] = \left( {a,a’} \right)\).

 

Lời giải chi tiết

a) Giả sử tứ diện đều có tất cả các cạnh bằng \(a\).

Gọi \(I\) là trung điểm của \(CD\), \(O\) là tâm của \(\Delta BC{\rm{D}}\)

\( \Rightarrow AO \bot \left( {BC{\rm{D}}} \right)\)

\( \Rightarrow \left( {AB,\left( {BC{\rm{D}}} \right)} \right) = \left( {AB,OB} \right) = \widehat {ABO}\)

\(BI\) là trung tuyến của tam giác đều \(BC{\rm{D}}\)

\( \Rightarrow BI = \frac{{BC\sqrt 3 }}{2} = \frac{{a\sqrt 3 }}{2} \Rightarrow BO = \frac{2}{3}BI = \frac{{a\sqrt 3 }}{3}\)

\(\cos \widehat {ABO} = \frac{{BO}}{{AB}} = \frac{{\sqrt 3 }}{3} \Rightarrow \widehat {ABO} \approx 54,{7^ \circ }\)

Vậy \(\left( {AB,\left( {BC{\rm{D}}} \right)} \right) \approx 54,{7^ \circ }\)

b) \(\Delta AC{\rm{D}}\) đều \( \Rightarrow AI \bot C{\rm{D}}\)

\(\Delta BC{\rm{D}}\) đều \( \Rightarrow BI \bot C{\rm{D}}\)

Vậy \(\widehat {AIB}\) là góc phẳng nhị diện \(\left[ {A,C{\rm{D}},B} \right]\).

\(OI = \frac{1}{3}BI = \frac{{a\sqrt 3 }}{6},AO = \sqrt {A{B^2} – B{O^2}} = \frac{{a\sqrt 6 }}{3}\)

\(\tan \widehat {AIB} = \frac{{AO}}{{OI}} = 2\sqrt 2 \Rightarrow \widehat {AIB} \approx 70,{5^ \circ }\)

\(\Delta AC{\rm{D}}\) đều \( \Rightarrow AI \bot C{\rm{D}}\)

\(\Delta EC{\rm{D}}\) đều \( \Rightarrow EI \bot C{\rm{D}}\)

Vậy \(\widehat {AIE}\) là góc phẳng nhị diện \(\left[ {A,C{\rm{D}},B} \right]\).

\(\widehat {AIE} = {180^ \circ } – \widehat {AIB} = 109,{5^ \circ }\)


Bài 2 trang 85 :

Cho hình chóp tứ giác đều \(S.ABCD\) có \(O\) là tâm của đáy và có tất cả các cạnh bằng nhau.

a) Tìm góc giữa đường thẳng \(SA\) và \(\left( {ABCD} \right)\).

b) Tim góc phẳng nhị diện \(\left[ {A,SO,B} \right];\left[ {S,AB,O} \right]\).

Phương pháp giải

‒ Cách tính góc giữa đường thẳng và mặt phẳng: Tính góc giữa đường thẳng đó và hình chiếu của nó lên mặt phẳng.

‒ Cách xác định góc phẳng nhị diện \(\left[ {A,d,B} \right]\): Dựng mặt phẳng \(\left( P \right)\) vuông góc với \(d\), gọi \(a,a’\) lần lượt là giao tuyến của \(\left( P \right)\) với hai nửa mặt phẳng chứa \(A,B\), khi đó \(\left[ {A,d,B} \right] = \left( {a,a’} \right)\).

 

Lời giải chi tiết

a) \(S.ABCD\) là hình chóp tứ giác đều có \(O\) là tâm của đáy

\( \Rightarrow SO \bot \left( {ABCD} \right) \Rightarrow \left( {SA,\left( {ABCD} \right)} \right) = \left( {SA,OA} \right) = \widehat {SAO}\)

Giả sử hình chóp tứ giác đều có tất cả các cạnh bằng \(a\).

\(\begin{array}{l}AC = \sqrt {A{B^2} + B{C^2}} = a\sqrt 2 \Rightarrow AO = \frac{1}{2}AC = \frac{{a\sqrt 2 }}{2}\\\cos \widehat {SAO} = \frac{{AO}}{{SA}} = \frac{{\sqrt 2 }}{2} \Rightarrow \widehat {SAO} = {45^ \circ }\end{array}\)

Vậy \(\left( {SA,\left( {ABCD} \right)} \right) = {45^ \circ }\)

b) Gọi \(I\) là trung điểm của \(AB\)

\(SO \bot \left( {ABCD} \right) \Rightarrow SO \bot AO,SO \bot BO\)

Vậy \(\widehat {AOB}\) là góc phẳng nhị diện \(\left[ {A,SO,B} \right]\).

\(ABC{\rm{D}}\) là hình vuông \( \Rightarrow \widehat {AOB} = {90^ \circ }\)

\(\Delta SAB\) đều \( \Rightarrow SI \bot AB\)

\(\Delta OAB\) vuông cân tại \(O \Rightarrow OI \bot AB\)

Vậy \(\widehat {SIO}\) là góc phẳng nhị diện \(\left[ {S,AB,O} \right]\).

Ta có: \(O\) là trung điểm của \(BD\)

\(I\) là trung điểm của \(AB\)

\( \Rightarrow OI\) là đường trung bình của \(\Delta AB{\rm{D}}\)

\( \Rightarrow OI = \frac{1}{2}AD = \frac{a}{2}\)

\(SO = \sqrt {S{A^2} – A{O^2}} = \frac{{a\sqrt 2 }}{2}\)

\(\tan \widehat {SIO} = \frac{{SO}}{{OI}} = \sqrt 2 \Rightarrow \widehat {SIO} \approx 54,{7^ \circ }\)


Bài 3 trang 85 :

Cho hình chóp cụt lục giác đều \(ABCDEF.A’B’C’D’E’F’\) với \(O\) và \(O’\) là tâm hai đáy, cạnh đáy lớn và đáy nhỏ lần lượt là \(a\) và \(\frac{a}{2},OO’ = a\)

a) Tìm góc giữa cạnh bên và mặt đáy.

b) Tìm góc phẳng nhị diện \(\left[ {O,AB,A’} \right];\left[ {O’,A’B’,A} \right]\).

Phương pháp giải

‒ Cách tính góc giữa đường thẳng và mặt phẳng: Tính góc giữa đường thẳng đó và hình chiếu của nó lên mặt phẳng.

‒ Cách xác định góc phẳng nhị diện \(\left[ {A,d,B} \right]\): Dựng mặt phẳng \(\left( P \right)\) vuông góc với , gọi \(a,a’\) lần lượt là giao tuyến của \(\left( P \right)\) với hai nửa mặt phẳng chứa \(A,B\), khi đó \(\left[ {A,d,B} \right] = \left( {a,a’} \right)\).

 

Lời giải chi tiết

a) Kẻ \(C’H \bot OC\left( {H \in OC} \right)\)

là hình chữ nhật \( \Rightarrow OH = O’C’ = a,OO’\parallel C’H\)

Mà \(OO’ \bot \left( {ABCDEF} \right)\)

\(\begin{array}{l} \Rightarrow C’H \bot \left( {ABCDEF} \right)\\ \Rightarrow \left( {CC’,\left( {ABCDEF} \right)} \right) = \left( {CC’,CH} \right) = \widehat {C’CH}\end{array}\)

\(\begin{array}{l}HC = OC – O’C’ = \frac{a}{2},C’H = OO’ = a\\ \Rightarrow \tan \widehat {C’CH} = \frac{{C’H}}{{HC}} = 2 \Rightarrow \widehat {C’CH} \approx 63,{4^ \circ }\end{array}\)

Vậy \(\left( {CC’,\left( {ABCDEF} \right)} \right) \approx 63,{4^ \circ }\)

b) Gọi \(M,M’\) lần lượt là trung điểm của \(AB,A’B’\).

\( \Rightarrow OM \bot AB,O’M’ \bot A’B’\)

\(ABB’A’\) là hình thang cân \( \Rightarrow MM’ \bot AB,MM’ \bot A’B’\)

\( \Rightarrow \left[ {O,AB,A’} \right] = \widehat {OMM’},\left[ {O’,A’B’,A} \right] = \widehat {O’M’M}\)

Kẻ \(M’K \bot OM\left( {K \in OM} \right)\)

\(OO’M’K\) là hình chữ nhật \( \Rightarrow OK = O’K’ = \frac{{A’B’\sqrt 3 }}{2} = \frac{{a\sqrt 3 }}{4},OO’ = M’K = a\)

\(\begin{array}{l}OM = \frac{{AB\sqrt 3 }}{2} = \frac{{a\sqrt 3 }}{2},MK = OM – OK = \frac{{a\sqrt 3 }}{4}\\ \Rightarrow \tan \widehat {OMM’} = \frac{{M’K}}{{MK}} = \frac{4}{{\sqrt 3 }} \Rightarrow \widehat {OMM’} \approx 66,{6^ \circ }\\ \Rightarrow \widehat {O’M’M} = {180^ \circ } – \widehat {OMM’} = 113,{4^ \circ }\end{array}\)


Bài 4 trang 85 :

Một con dốc có dạng hình lăng trụ đứng tam giác với kích thước như trong Hình 9.

a) Tính số đo góc giữa đường thẳng \(CA’\) và .

b) Tính số đo góc nhị diện cạnh \(CC’\).

Phương pháp giải

‒ Cách tính góc giữa đường thẳng và mặt phẳng: Tính góc giữa đường thẳng đó và hình chiếu của nó lên mặt phẳng.

‒ Cách xác định góc nhị diện \(\left[ {{P_1},d,{Q_1}} \right]\)

Bước 1: Xác định \(c = \left( {{P_1}} \right) \cap \left( {{Q_1}} \right)\).

Bước 2: Tìm mặt phẳng \(\left( R \right) \supset c\).

Bước 3: Tìm \(p = \left( R \right) \cap \left( {{P_1}} \right),q = \left( R \right) \cap \left( {{Q_1}} \right),O = p \cap q,M \in p,N \in q\).

Khi đó \(\left[ {{P_1},d,{Q_1}} \right] = \widehat {MON}\).

 

Lời giải chi tiết

a) Ta có:

\(\begin{array}{l}\left. \begin{array}{l}BB’ \bot \left( {A’B’C’} \right) \Rightarrow BB’ \bot A’B’\\A’B’ \bot B’C’\end{array} \right\} \Rightarrow A’B’ \bot \left( {CC’B’B} \right)\\ \Rightarrow \left( {CA’,\left( {CC’B’B} \right)} \right) = \left( {CA’,CB’} \right) = \widehat {A’CB’}\\B’C = \sqrt {BB{‘^2} + B{C^2}} = 2\sqrt {61} ,A’B’ = AB = 4\\\tan \widehat {A’CB’} = \frac{{A’B’}}{{B’C}} = \frac{2}{{\sqrt {61} }} \Rightarrow \widehat {A’CB’} \approx 14,{4^ \circ }\end{array}\)

Vậy \(\left( {CA’,\left( {CC’B’B} \right)} \right) \approx 14,{4^ \circ }\)

b) \(CC’ \bot \left( {ABC} \right) \Rightarrow CC’ \bot AC,CC’ \bot BC\)

Vậy \(\widehat {ACB}\) là góc nhị diện cạnh \(CC’\).

\(\tan \widehat {ACB} = \frac{{AB}}{{AC}} = \frac{1}{3} \Rightarrow \widehat {ACB} \approx 18,{4^ \circ }\)


Bài 5 trang 85 :

Người ta định đào một cái hầm có dạng hình chóp cụt tứ giác đều có hai cạnh đáy là 14 m và 10 m. Mặt bên tạo với đáy nhỏ thành một góc nhị diện có số đo bằng 135°. Tính số mét khối đất cần phải di chuyển ra khỏi hầm.

Phương pháp giải

‒ Cách xác định góc nhị diện \(\left[ {{P_1},d,{Q_1}} \right]\)

Bước 1: Xác định \(c = \left( {{P_1}} \right) \cap \left( {{Q_1}} \right)\).

Bước 2: Tìm mặt phẳng \(\left( R \right) \supset c\).

Bước 3: Tìm \(p = \left( R \right) \cap \left( {{P_1}} \right),q = \left( R \right) \cap \left( {{Q_1}} \right),O = p \cap q,M \in p,N \in q\).

Khi đó \(\left[ {{P_1},d,{Q_1}} \right] = \widehat {MON}\).

‒ Sử dụng công thức tính thể tích khối chóp cụt đều: \(V = \frac{1}{3}h\left( {S + \sqrt {SS’} + S’} \right)\).

 

Lời giải chi tiết

Mô hình hoá cái hầm bằng cụt chóp tứ giác đều \(ABCD.A’B’C’D’\) với \(O,O’\) là tâm của hai đáy. Vậy \(AB = 14,A’B’ = 10\).

Gọi \(M,M’\) lần lượt là trung điểm của \(CD,C’D’\).

\(A’B’C'{\rm{D}}’\) là hình vuông \( \Rightarrow O’M’ \bot C'{\rm{D}}’\)

\(CDD’C’\) là hình thang cân \( \Rightarrow MM’ \bot C’D’\)

Vậy \(\widehat {MM’O’}\) là góc nhị diện giữa mặt bên và đáy nhỏ.

\( \Rightarrow \widehat {MM’O’} = {135^ \circ } \Rightarrow \widehat {M’MO} = {180^ \circ } – \widehat {MM’O’} = {45^ \circ }\)

Kẻ \(M’H \bot OM\left( {H \in OM} \right)\)

\(OMM’O’\) là hình chữ nhật

\( \Rightarrow OH = O’M’ = 5,MH = OM – OH = 2,M’H = OO’ = MH.\tan {45^ \circ } = 2\)

Diện tích đáy lớn là: \(S = A{B^2} = {14^2} = 196\left( {{m^2}} \right)\)

Diện tích đáy bé là: \(S’ = A’B{‘^2} = {10^2} = 100\left( {{m^2}} \right)\)

Số mét khối đất cần phải di chuyển ra khỏi hầm là:

\(V = \frac{1}{3}h\left( {S + \sqrt {SS’} + S’} \right) = \frac{1}{3}.2\left( {196 + \sqrt {196.100} + 100} \right) = \frac{{872}}{3} \approx 290,67\left( {{m^3}} \right)\)

 

 

Giải bài tập Bài 5: Góc giữa đường thẳng và mặt phẳng. Góc nhị diện – Chương 8 – Toán 11 – Chân trời sáng tạo