Bài 8: Đại lượng tỉ lệ nghịch – Toán 7 – Cánh Diều

Bài 8: Đại lượng tỉ lệ nghịch – Toán 7 – Cánh Diều

Bài 8: Đại lượng tỉ lệ nghịch – Toán 7 – Cánh Diều

 

I. Khái niệm

Nếu đại lượng y liên hệ với đại lượng x theo công thức \(y = \frac{a}{x}\) hay x.y = a (a là hằng số khác 0) thì y tỉ lệ nghịch với x theo hệ số tỉ lệ a

Quảng cáo

decumar

Chú ý: Nếu đại lượng y tỉ lệ nghịch với đại lượng x theo hệ số tỉ lệ a thì đại lượng x cũng tỉ lệ nghịch với đại lượng y theo hệ số tỉ lệ a. Ta nói x và y là hai đại lượng tỉ lệ nghịch với nhau.

II. Tính chất

Nếu 2 đại lượng tỉ lệ nghịch với nhau thì:

+ Tích hai đại lượng tương ứng của chúng luôn không đổi ( bằng hệ số tỉ lệ).

+ Tỉ số hai giá trị bất kì của đại lượng này bằng nghịch đảo tỉ số hai giá trị tương ứng của đại lượng kia.

Cụ thể: Nếu y tỉ lệ nghịch với x theo hệ số tỉ lệ a. Với mỗi giá trị x1 , x2 , x3 ,… khác 0 của x, lần lượt tương ứng với giá trị y1 , y2 , y3 ,… của y thì:

  • x1y1 = x2y2 = …. = a
  • \(\frac{{{x_1}}}{{{x_2}}} = \frac{{{y_2}}}{{{y_1}}};\frac{{{x_1}}}{{{x_3}}} = \frac{{{y_3}}}{{{y_1}}};…\)

Ví dụ:

Vì v. t = s không đổi nên vận tốc và thời gian ô tô đi là 2 đại lượng tỉ lệ nghịch

Theo tính chất 2 đại lượng tỉ lệ nghịch, ta có:


 

Khởi động trang 64 Toán lớp 7 Tập 1: Khi tham gia thi công dự án đường cao tốc Nội Bài – Lào Cai, một đội công nhân gồm 18 người dự định hoàn thành công việc được giao trong 12 ngày. Nhưng khi bắt đầu công việc, đội công nhân được bổ sung thêm thành 27 người. Giả sử năng suất lao động của mỗi công nhân là như nhau.

* Khi số công nhân tăng lên thì thời gian hoàn thành công việc sẽ tăng lên hay giảm đi?

* 27 công nhân hoàn thành công việc đó trong bao lâu?

Lời giải:

* Khi số công nhân tăng lên thì thời gian hoàn thành công việc sẽ giảm đi.

* 27 công nhân sẽ hoàn thành công việc trong số ngày là: 12.18:27 = 8 ngày.


 

Đề bài

Khi tham gia thi công dự án đường cao tốc Nội Bài – Lào Cai, một đội công nhân gồm 18 người dự định hoàn thành công việc được giao trong 12 ngày. Nhưng khi bắt đầu công việc, đội công nhân được bổ sung thêm thành 27 người. Giả sử năng suất lao động của mỗi công nhân là như nhau.

Khi số công nhân tăng lên thì thời gian hoàn thành công việc sẽ tăng lên hay giảm đi?

27 công nhân hoàn thành công việc đó trong bao lâu?

 

Phương pháp giải – Xem chi tiết

Cách 1: + Tính khối lượng công việc 1 người làm được trong 1 ngày

+ Tính khối lượng công việc 27 người làm được trong 1 ngày

+ Thời gian 27 người làm xong = 1 : khối lượng 27 người làm được trong 1 ngày

Cách 2: Thời gian hoàn thành và số công nhân là hai đại lượng tỉ lệ nghịch.

Lời giải chi tiết

Khi số công nhân tăng lên thì thời gian hoàn thành giảm đi.

Cách 1: Trong 1 ngày, 18 công nhân làm được: \(\frac{1}{{12}}\) (công việc)

Trong 1 ngày, 1 công nhân làm được: \(\frac{1}{{12}}:18 = \frac{1}{{216}}\) (công việc)

Trong 1 ngày, 27 công nhân làm được: \(\frac{1}{{216}}.27 = \frac{1}{8}\) (công việc)

27 công nhân hoàn thành công việc đó trong: 1 : \(\frac{1}{8}\) = 8 (ngày)

Cách 2:

Gọi thời gian để 27 công nhân hoàn thành công việc là x (ngày) (x > 0)

Vì thời gian hoàn thành và số công nhân là 2 đại lượng tỉ lệ nghịch nên theo tính chất 2 đại lượng tỉ lệ nghịch, ta có:

12. 18 = x . 17 nên \(x = \frac{{12.18}}{{27}} = 8\)

Vậy 27 công nhân hoàn thành công việc trong 8 ngày.


 

Hoạt động 1

Giả sử một xe ô tô chuyển động đều trên quãng đường AB dài 240 km. Vận tốc v (km/h) và thời gian t (h) của xe ô tô khi đi từ A đến B được liên hệ theo công thức v = \(\frac{{240}}{t}\). Tìm số thích hợp cho trong bảng sau:

 

Phương pháp giải:

Thay giá trị của t vào công thức v = \(\frac{{240}}{t}\)để tính giá trị v tương ứng

Lời giải chi tiết:

Với t = 3 thì v = \(\frac{{240}}{3} = 80\)

Với t = 4 thì v = \(\frac{{240}}{4} = 60\)

Với t = 5 thì v = \(\frac{{240}}{5} = 48\)

Với t = 6 thì v = \(\frac{{240}}{6} = 40\)

t (h)3456
v (km/h)80604840
Quảng cáo

decumar

 

Luyện tập vận dụng 1

Một công nhân theo kế hoạch cần phải làm 1 000 sản phẩm.

a) Gọi x (h) là thời gian người công nhân đó làm và y là số sản phẩm làm được trong 1 giờ. Viết công thức tính y theo x.

b) Hỏi x và y có phải là hai đại lượng tỉ lệ nghịch hay không? Nếu có hãy xác định hệ số tỉ lệ.

c) Tính giá trị của y khi x = 10; x = 20; x = 25.

Phương pháp giải:

b) Nếu đại lượng y liên hệ với đại lượng x theo công thức \(y = \frac{a}{x}\) hay x.y = a (a là hằng số khác 0) thì y tỉ lệ nghịch với x theo hệ số tỉ lệ a

c) Thay giá trị x vào công thức liên hệ, tìm y

Lời giải chi tiết:

a) y = \(\frac{{1000}}{x}\)

b) x và y là hai đại lượng tỉ lệ nghịch vì x và y liên hệ với nhau theo công thức y = \(\frac{{1000}}{x}\)

Hệ số tỉ lệ là: 1000

c) Khi x = 10 thì y = \(\frac{{1000}}{{10}} = 100\)

Khi x = 20 thì y = \(\frac{{1000}}{{20}} = 50\)

Khi x = 25 thì y = \(\frac{{1000}}{{25}} = 40\)


 

 

Hoạt động 2

Cho biết x, y là hai đại lượng tỉ lệ nghịch với nhau:

xx1 = 20x2 = 18x3 = 15x4 = 5
yy1 = 9y2 = ?y3 = ?y4 = ?

a) Hãy xác định hệ số tỉ lệ

b) Tìm số thích hợp cho ? trong bảng trên

c) So sánh các tỉ số: x1y1 ; x2y2 ; x3y3 ; x4y4.

d) So sánh các tỉ số: \(\frac{{{x_1}}}{{{x_2}}}\) và \(\frac{{{y_2}}}{{{y_1}}}\); \(\frac{{{x_1}}}{{{x_3}}}\) và \(\frac{{{y_3}}}{{{y_1}}}\); \(\frac{{{x_3}}}{{{x_4}}}\) và \(\frac{{{y_4}}}{{{y_3}}}\)

Phương pháp giải:

+ Nếu đại lượng y liên hệ với đại lượng x theo công thức \(y = \frac{a}{x}\) hay x.y = a (a là hằng số khác 0) thì y tỉ lệ nghịch với x theo hệ số tỉ lệ a

+ Tính các tích rồi so sánh

+ Tính các tỉ số rồi so sánh

Lời giải chi tiết:

a) Hệ số tỉ lệ a = x1.y1 = 20. 9 =180

b) Ta có: y= \(\frac{{180}}{x}\)

Khi x2 = 18 thì y2 = \(\frac{{180}}{{{x_2}}} = \frac{{180}}{{18}} = 10\)

Khi x3 = 15 thì y3 = \(\frac{{180}}{{{x_3}}} = \frac{{180}}{{15}} = 12\)

Khi x4 = 18 thì y4 = \(\frac{{180}}{{{x_4}}} = \frac{{180}}{5} = 36\)

c) Tích x1.y1 = 20. 9 =180

x2.y2 = 18.10 =180

x3.y3 = 15.12 =180

x4.y4 = 5.36 =180

Vậy x1y1 = x2y2 = x3y3 = x4y4 =180

d) Ta có:

\(\frac{{{x_1}}}{{{x_2}}}\) = \(\frac{{20}}{{18}}\)=\(\frac{{10}}{9}\) ; \(\frac{{{y_2}}}{{{y_1}}}\)= \(\frac{{10}}{9}\)

\(\frac{{{x_1}}}{{{x_3}}}\) = \(\frac{{20}}{{15}}\)=\(\frac{4}{3}\) ; \(\frac{{{y_3}}}{{{y_1}}}\) = \(\frac{{12}}{9}\) = \(\frac{4}{3}\)

\(\frac{{{x_3}}}{{{x_4}}}\) = \(\frac{{15}}{5}\) = 3; \(\frac{{{y_4}}}{{{y_3}}}\)= \(\frac{{36}}{{12}}\) = 3

Vậy \(\frac{{{x_1}}}{{{x_2}}}\) = \(\frac{{{y_2}}}{{{y_1}}}\); \(\frac{{{x_1}}}{{{x_3}}}\)= \(\frac{{{y_3}}}{{{y_1}}}\); \(\frac{{{x_3}}}{{{x_4}}}\) = \(\frac{{{y_4}}}{{{y_3}}}\)

 

Luyện tập vận dụng 2

Một ô tô dự định đi từ A đến B trong 6 giờ. Nhưng thực tế ô tô đi với vận tốc gấp \(\frac{4}{3}\) vận tốc dự định. Tính thời gian ô tô đã đi.

Phương pháp giải:

Thời gian ô tô đi và vận tốc đi trên cùng 1 quãng đường là 2 đại lượng tỉ lệ nghịch

Sử dụng tính chất 2 đại lượng tỉ lệ nghịch: \(\frac{{{x_1}}}{{{x_2}}}\) = \(\frac{{{y_2}}}{{{y_1}}}\)

Lời giải chi tiết:

Vì v. t = s không đổi nên vận tốc và thời gian ô tô đi là 2 đại lượng tỉ lệ nghịch

Theo tính chất 2 đại lượng tỉ lệ nghịch, ta có:

 


Luyện tập vận dụng 3

Một xưởng may có 56 công nhân dự định hoàn thành một hợp đồng trong 21 ngày. Nhưng bên đặt hàng muốn nhận hàng sớm nên xưởng may cần phải hoàn thành hợp đồng trong 14 ngày. Hỏi xưởng may cần tăng thêm bao nhiêu công nhân? Giả sử năng suất của mỗi công nhân là như nhau.

Phương pháp giải:

+) Số công nhân và thời gian hoàn thành công việc là hai đại lượng tỉ lệ nghịch.

Sử dụng tính chất 2 đại lượng tỉ lệ nghịch: x1. y1 = x2. y2

+) Số công nhân cần tăng thêm = số công nhân cần – số công nhân có sẵn

Lời giải chi tiết:

Gọi số công nhân cần để hoàn thành hợp đồng trong 14 ngày là x (x > 0)

Vì khối lượng công việc không đổi và năng suất của mỗi người là như nhau nên số công nhân và thời gian hoàn thành công việc là hai đại lượng tỉ lệ nghịch nên theo tính chất của 2 2 đại lượng tỉ lệ nghịch, ta có: 56.21 = x.14 nên x = \(\frac{{56.21}}{{14}} = 84\)

Số công nhân cần tăng thêm là:

84 – 56 = 28 (người)

 

Luyện tập vận dụng 4

Có ba bánh răng a,b,c ăn khớp nhau (Hình 8). Số răng a,b,c theo thứ tự là 12;24;18. Cho biết mỗi phút bánh răng a quay được 18 vòng. Tính số vòng quay trong một phút của mỗi bánh răng b và c.

 

Phương pháp giải:

Số răng và số vòng quay được của bánh răng là 2 đại lượng tỉ lệ nghịch

Sử dụng tính chất 2 đại lượng tỉ lệ nghịch: x1. y1 = x2. y2 = x3. y3

Lời giải chi tiết:

Vì quãng đường quay được của 3 bánh răng là như nhau nên số răng và số vòng quay được của bánh răng là hai đại lượng tỉ lệ nghịch

Gọi số vòng quay được trong 1 phút của bánh răng b và c lần lượt là x, y (vòng) (x,y >0)

Theo tính chất của 2 đại lượng tỉ lệ nghịch, ta có:

12. 18 = 24 . x = 18 . y

Nên x = 12.18:24 = 9 (vòng)

y = 12.18 : 18 = 12 (vòng)

Vậy số vòng quay trong một phút của mỗi bánh răng b và c lần lượt là: 9 vòng và 12 vòng.


Bài 1 trang 68 Toán lớp 7 Tập 1:

Giá trị của hai đại lượng x, y được cho bởi bảng sau:

 

Lời giải chi tiết

2 đại lượng x và y có tỉ lệ nghịch với nhau vì 3.32 = 4.24 = 6.16 = 8. 12 = 48 . 2


Bài 2 trang 68 Toán lớp 7 Tập 1:

Cho biết x, y là hai đại lượng tỉ lệ nghịch với nhau và khi x = 36 thì y = 15

a) Tìm hệ số tỉ lệ.

b) Viết công thức tính y theo x

c) Tính giá trị của y khi x = 12; x =18; x = 60.

 

Lời giải chi tiết

a) Hệ số tỉ lệ là: a = x .y = 36 . 15 = 540

b) Công thức tính y theo x là: y = \(\frac{a}{x} = \frac{{540}}{x}\)

c) Khi x = 12 thì y = \(\frac{{540}}{{12}} = 45\)

Khi x = 18 thì y = \(\frac{{540}}{{18}} = 30\)

Khi x = 60 thì y = \(\frac{{540}}{{60}} = 9\)


Bài 3 trang 68 Toán lớp 7 Tập 1: Theo dự định, một nhóm thợ có 35 người sẽ xây một tòa nhà hết 168 ngày. Nhưng khi bắt đầu làm, có một số người không tham gia được nên nhóm thợ chỉ còn 28 người. Hỏi khi đó nhóm thợ phải mất bao nhiêu lâu để xây xong tòa nhà? Giả sử năng suất làm việc của mỗi người như nhau.

Lời giải:

Gọi x (người) và y (ngày) lần lượt là số người thợ và số ngày để xây hết một tòa nhà (x ; y > 0).

Khi đó, mối liên hệ giữa số người thợ và số ngày xây nhà tỉ lệ nghịch với nhau nên theo tính chất tỉ lệ nghịch ta có x1.y1 = x2.y2.

Thay x1 = 35; y1 = 168; x2 = 28 ta được: 35.168 = 28.y2

Suy ra (ngày)

Vậy 28 người thợ thì phải xây trong 210 ngày để xong tòa nhà.


 

Bài 4 trang 68 Toán lớp 7 Tập 1:

Đề bài

Chị Lan định mua 10 bông hoa với số tiền định trước. Nhưng do vào dịp lễ nên giá hoa tăng 25%. Hỏi với số tiền đó, chị Lan mua được bao nhiêu bông hoa?

 

Lời giải chi tiết

Gọi số hoa mua được là x (bông) (\(x \in \mathbb{N}^*\))

Giả sử giá hoa trước lễ là a thì giá hoa vào dịp lễ là 1,25.a

Vì số hoa . giá hoa = số tiền mua hoa (không đổi) nên số hoa và giá hoa là hai đại lượng tỉ lệ nghịch.

Áp dụng tính chất của 2 đại lượng tỉ lệ nghịch, ta có:

10. a = x.1,25.a nên x = \(\frac{{10.a}}{{1,25.a}} = 8\)(thỏa mãn)

Vậy chị Lan mua được 8 bông hoa.

 


Bài 5 trang 68 Toán lớp 7 Tập 1:

Ở nội dung 400 m nữ tại vòng loại Thế vận hội mùa hè năm 2016, vận động viên Nguyễn Thị Ánh Viên đã về đích với thành tích 4 phút 36 giây 85 (tức là 4 phút và 36,85 giây).

Cũng ở nội dung bơi 400 m nữ tại Giải bơi lội vô địch thế giới tổ chức tại Kazan (Nga) năm 2015, Ánh Viên đạt thành tích là 4 phút 38 giây 78( tức là 4 phút và 38,78 giây).

Tính tỉ số giữa tốc độ trung bình của Ánh Viên tại Thế vận hội mùa hè năm 2016 và tại Giải bơi lội vô địch thế giới tổ chức ở Kazan (Nga) năm 2015

 

Lời giải chi tiết

Đổi 4 phút 36 giây 85 = 276,85 giây

4 phút 38 giây 78 = 278,78 giây

Vì quãng đường không đổi nên vận tốc và thời gian là 2 đại lượng tỉ lệ nghịch

Áp dụng tính chất 2 đại lượng tỉ lệ nghịch, ta có:

\(\frac{{{v_1}}}{{{v_2}}} = \frac{{{t_2}}}{{{t_1}}} = \frac{{278,78}}{{276,85}} \approx 1,007\)

Vậy tỉ số giữa tốc độ trung bình của Ánh Viên tại Thế vận hội mùa hè năm 2016 và tại Giải bơi lội vô địch thế giới tổ chức ở Kazan (Nga) năm 2015 là: 1,007

 

 


Bài 6 trang 68 Toán lớp 7 Tập 1:

Một loại tàu cao tốc hiện nay ở Nhật Bản có thể di chuyển với tốc độ trung bình là 300 km/h, nhanh gấp 1,43 lần so với thế hệ tàu cao tốc đầu tiên.

Nếu tàu cao tốc loại đó chạy một quãng đường trong 4 giờ thì tàu cao tốc thế hệ đầu tiên sẽ phải chạy quãng đường đó trong bao nhiêu giờ?

 

Lời giải chi tiết

Gọi t1, v1 lần lượt là thời gian và vận tốc của thế hệ tàu cao tốc đầu tiên.

t2, v2 lần lượt là thời gian và vận tốc của cao tốc hiện nay.

Vì quãng đường không đổi nên vận tốc và thời gian là 2 đại lượng tỉ lệ nghịch.

Áp dụng tính chất 2 đại lượng tỉ lệ nghịch, ta có:

\(\frac{{{v_2}}}{{{v_1}}} = \frac{{{t_1}}}{{{t_2}}}\)

Mà tàu hiện nay đi với vận tốc gấp 1,43 lần so với thế hệ tàu cao tốc đầu tiên nên \(\frac{{{v_2}}}{{{v_1}}} = 1,43\).

Ta được: \(\frac{{{t_1}}}{4} = 1,43 \Rightarrow {t_1} = 1,43.4 = 5,72\)(h).

Vậy nếu tàu cao tốc loại đó chạy một quãng đường trong 4 giờ thì tàu cao tốc thế hệ đầu tiên sẽ phải chạy quãng đường đó trong 5,72 giờ.


 

Bài 7 trang 68 Toán lớp 7 Tập 1:

Một bánh răng có 40 răng, quay mỗi phút được 15 vòng, nó khớp với một bánh răng thứ hai. Giả sử bánh răng thứ hai quay một phút được 20 vòng. Hỏi bánh răng thứ hai có bao nhiêu răng?

Lời giải chi tiết

Vì quãng đường quay được của 2 bánh răng là như nhau nên số răng và số vòng quay được của bánh răng là hai đại lượng tỉ lệ nghịch

Gọi số răng của bánh răng thứ hai là x (x >0)

Theo tính chất của 2 đại lượng tỉ lệ nghịch, ta có:

40.15 = x . 20 nên x = 40.15:20=30 (thỏa mãn)

Vậy bánh răng thứ hai có 30 răng

 

Giải bài tập Toán 7 – Cánh Diều

 

Giải Toán lớp 7 Tập 2

 

 

 

Bài 8: Đại lượng tỉ lệ nghịch – Toán 7 – Cánh Diều

Bài 8: Đại lượng tỉ lệ nghịch – Toán 7 – Cánh Diều

 

 

Bài 8: Đại lượng tỉ lệ nghịch – Toán 7 – Cánh Diều