Bài 7: Đại lượng tỉ lệ thuận – Toán 7 – Cánh Diều

Bài 7: Đại lượng tỉ lệ thuận – Toán 7 – Cánh Diều

 

I. Khái niệm

Nếu đại lượng y liên hệ với đại lượng x theo công thức y = k.x (k là hằng số khác 0) thì y tỉ lệ thuận với x theo hệ số tỉ lệ k.

Chú ý: Nếu đại lượng y tỉ lệ thuận với đại lượng x theo hệ số tỉ lệ k thì đại lượng x tỉ lệ thuận với đại lượng y theo hệ số tỉ lệ \(\frac{1}{k}\). Ta nói x và y là hai đại lượng tỉ lệ thuận với nhau.

II. Tính chất

Nếu 2 đại lượng tỉ lệ thuận với nhau thì:

+ Tỉ số hai đại lượng tương ứng của chúng luôn không đổi.

+ Tỉ số hai giá trị bất kì của đại lượng này bằng tỉ số hai giá trị tương ứng của đại lượng kia.

Cụ thể: Nếu y tỉ lệ thuận với x theo hệ số tỉ lệ k. Với mỗi giá trị x1 , x2 , x3 ,… khác 0 của x, lần lượt tương ứng với giá trị y1 , y2 , y3 ,… của y thì:

  • \(\frac{{{y_1}}}{{{x_1}}} = \frac{{{y_2}}}{{{x_2}}} = \frac{{{y_3}}}{{{x_3}}} = …. = k\)
  • \(\frac{{{x_1}}}{{{x_2}}} = \frac{{{y_1}}}{{{y_2}}};\frac{{{x_1}}}{{{x_3}}} = \frac{{{y_1}}}{{{y_3}}};…\)

Ví dụ:

Trung bình cứ 5 l nước biển chứa 175 g muối. Hỏi trung bình 12 l nước biển chứa bao nhiêu gam muối?

Lời giải

Gọi khối lượng muối có trong 12 l nước biển là x (g) (x > 0)

Vì lượng nước biển và lượng muối nó chứa là hai đại lượng tỉ lệ thuận nên theo tính chất của hai đại lượng tỉ lệ thuận, ta có: \(\frac{{175}}{5} = \frac{x}{{12}} \Rightarrow x = \frac{{175.12}}{5} = 420\)

Vậy khối lượng muối có trong 12 l nước biển là 420 g.

 


 

 

Khởi động trang 59 Toán lớp 7 Tập 1: Một chiếc máy bay bay với vận tốc không đổi là 900km/h.

Quãng đường s (km) mà máy bay đó bay được và thời gian di chuyển t (h) là hai đại lượng liên hệ với nhau như nào?

Lời giải:

Do vận tốc bay của máy bay là 900 km/ h không đổi nên khi bay quãng đường càng dài thì càng mất nhiều thời gian bay, khi bay quãng đường càng ngắn thì càng mất ít thời gian bay.

Do đó với vận tốc bay không đổi, nếu quãng đường bay tăng thì thời gian bay tăng; quãng đường bay giảm thì thời gian bay giảm.


 

Hoạt động 1 trang 59 Toán lớp 7 Tập 1: Chiều dài x (m) và khối lượng m (kg) của thanh sắt phi 18 được liên hệ theo công thức m = 2x. Tìm số thích hợp cho

trong bảng sau:

Hoạt động 1 trang 59 Toán 7 Tập 1 Cánh diều

Lời giải:

Công thức liên hệ giữa chiều dài và khối lượng của thanh sắt phi 18 là: m = 2.x.

+) Với x = 2 thì m = 2.2 = 4

+) Với x = 3 thì m = 2.3 = 6

+) Với x = 5 thì m = 2.5 = 10

+) Với x = 8 thì m = 2.8 = 16

Ta có bảng sau:

x (m)2358
m (kg)461016

 

Luyện tập 1 trang 60 Toán lớp 7 Tập 1: Một chiếc ô tô chuyển động đều với vận tốc 65km/h.

a) Viết công thức tính quãng đường đi được s (km) theo thời gian t (h) của chuyển động.

b) s và t có phải hai đại lượng tỉ lệ thuận hay không? Nếu có hãy xác định hệ số tỉ lệ của s đối với t.

c) Tính giá trị của s khi t = 0,5; t = \[\frac{3}{2}\]; t = 2.

Lời giải:

a) Công thức tính quãng đường đi được s (km) theo thời gian t (h) của chuyển động là:

s = v.t = 65.t (km)

b) Theo công thức tìm được ở câu a) s = 65.t thì ta thấy s và t là hai đại lượng tỉ lệ thuận theo hệ số tỉ lệ là 65.

c)

+) Với t = 0,5 thì s = 65.0,5 = 32,5 (km)

+) Với t = \[\frac{3}{2}\]

thì s = 65. \[\frac{3}{2}\]= 97,5 (km)

+ Với t = 2 thì s = 65.2 = 130 (km).


 

Hoạt động 2

Cho biết x, y là hai đại lượng tỉ lệ thuận với nhau:

xx1 = 3x2 = 5X3 = 7
yy1 = 9y2 = 15y3 = 21

a) Hãy xác định hệ số tỉ lệ của y đối với x

b) So sánh các tỉ số: \(\frac{{{y_1}}}{{{x_1}}},\frac{{{y_2}}}{{{x_2}}},\frac{{{y_3}}}{{{x_3}}}\)

c) So sánh các tỉ số: \(\frac{{{x_1}}}{{{x_2}}}\) và \(\frac{{{y_1}}}{{{y_2}}}\); \(\frac{{{x_1}}}{{{x_3}}}\) và \(\frac{{{y_1}}}{{{y_3}}}\)

Lời giải chi tiết:

a) Vì hai đại lượng x,y tỉ lệ thuận, liên hệ với nhau bởi công thức y = 3.x nên hệ số tỉ lệ k = 3

b) Ta có:

\(\begin{array}{l}\frac{{{y_1}}}{{{x_1}}} = \frac{9}{3} = 3;\frac{{{y_2}}}{{{x_2}}} = \frac{{15}}{5} = 3;\frac{{{y_3}}}{{{x_3}}} = \frac{{21}}{7} = 3\\ \Rightarrow \frac{{{y_1}}}{{{x_1}}} = \frac{{{y_2}}}{{{x_2}}} = \frac{{{y_3}}}{{{x_3}}}\end{array}\)

c) Ta có:

\(\begin{array}{l}\frac{{{x_1}}}{{{x_2}}} = \frac{3}{5};\frac{{{y_1}}}{{{y_2}}} = \frac{9}{{15}} = \frac{3}{5} \Rightarrow \frac{{{x_1}}}{{{x_2}}} = \frac{{{y_1}}}{{{y_2}}}\\\frac{{{x_1}}}{{{x_3}}} = \frac{3}{7};\frac{{{y_1}}}{{{y_3}}} = \frac{9}{{21}} = \frac{3}{7} \Rightarrow \frac{{{x_1}}}{{{x_3}}} = \frac{{{y_1}}}{{{y_3}}}\end{array}\)


 

Luyện tập vận dụng 2

Một máy in trong 5 phút in được 120 trang. Hỏi trong 3 phút máy in đó in được bao nhiêu trang?

 

Lời giải chi tiết:

Cách 1: Gọi số trang máy in đó in được trong 3 phút là x (x > 0)

Vì thời gian in và số trang in được là hai đại lượng tỉ lệ thuận nên theo tính chất của hai đại lượng tỉ lệ thuận, ta có: \(\frac{{120}}{5} = \frac{x}{3} \Rightarrow x = \frac{{120.3}}{5} = 72\)

Vậy trong 3 phút máy in đó in được 72 trang.

Cách 2: Số trang máy in in được trong 1 phút là: 120:5 = 24 (trang)

Số trang máy in in được trong 3 phút là: 3.24 =72 (trang)

Luyện tập vận dụng 3

Nhà trường phân công ba lớp 7A,7B,7C chăm sóc 54 cây xanh trong trường. Số cây mỗi lớp cần chăm sóc tỉ lệ thuận với số học sinh của lớp. Biết lớp 7A có 40 học sinh, lớp 7B có 32 học sinh, lớp 7C có 36 học sinh. Tính số cây mỗi lớp cần chăm sóc

Phương pháp giải:

+ Gọi số cây mỗi lớp cần chăm sóc là x,y,z (x,y,z > 0)

+ Biểu diễn mối liên hệ giữa số học sinh và số cây

Sử dụng tính chất của dãy tỉ số bằng nhau: \(\frac{a}{b} = \frac{c}{d} = \frac{e}{f} = \frac{{a + c + e}}{{b + d + f}}\)

Lời giải chi tiết:

Gọi số cây mỗi lớp cần chăm sóc là x,y,z (x,y,z > 0)

Vì số cây mỗi lớp cần chăm sóc tỉ lệ thuận với số học sinh của lớp nên \(\frac{x}{{40}} = \frac{y}{{32}} = \frac{z}{{36}}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\begin{array}{l}\frac{x}{{40}} = \frac{y}{{32}} = \frac{z}{{36}} = \frac{{x + y + z}}{{40 + 32 + 36}} = \frac{{54}}{{108}} = \frac{1}{2}\\ \Rightarrow x = 40.\frac{1}{2} = 20\\y = 32.\frac{1}{2} = 16\\z = 36.\frac{1}{2} = 18\end{array}\)

Vậy mỗi lớp 7A, 7B, 7C cần chăm sóc lần lượt là: 20 cây, 16 cây, 18 cây.


Bài 1 trang 62 Toán lớp 7 Tập 1:

Các giá trị tương ứng của khối lượng m (g) và thể tích V (cm3) được cho bởi bảng sau:

 

a) Tìm số thích hợp cho ?

b) Hai đại lượng m và V có tỉ lệ thuận với nhau không? Vì sao?

c) Xác định hệ số tỉ lệ của m đối với V. Viết công thức tính m theo V

 

Lời giải chi tiết

a)

 

b) Hai đại lượng m và V tỉ lệ thuận với nhau vì tỉ lệ \(\dfrac{m}{V}\) không đổi.

c) Hệ số tỉ lệ của m đối với V là: 11,3

Công thức liên hệ: m = 11,3 . V


Bài 2 trang 63 Toán lớp 7 Tập 1:

Cho biết x, y là hai đại lượng tỉ lệ thuận với nhau:

 

a) Xác định hệ số tỉ lệ của y đối với x. Viết công thức tính y theo x.

b) Xác định hệ số tỉ lệ của x đối với y. Viết công thức tính x theo y.

c) Tìm số thích hợp cho ?

Lời giải chi tiết

a) Hệ số tỉ lệ của y đối với x là: k1 =\(\frac{6}{4} = \frac{3}{2}\). Công thức tính y theo x là: y = k1 . x = \(\frac{3}{2}\).x

b) Hệ số tỉ lệ của x đối với y là: k2 =\(\frac{4}{6} = \frac{2}{3}\). Công thức tính x theo y là: x = k2 . y = \(\frac{2}{3}\).y

c)

 

Chú ý:

Nếu đại lượng y tỉ lệ thuận với đại lượng x theo hệ số tỉ lệ k thì đại lượng x tỉ lệ thuận với đại lượng y theo hệ số tỉ lệ \(\frac{1}{k}\).

 


Bài 3 trang 63 Toán lớp 7 Tập 1:

Trung bình cứ 5 l nước biển chứa 175 g muối. Hỏi trung bình 12 l nước biển chứa bao nhiêu gam muối?

 

Phương pháp giải – Xem chi tiết

Cách 1: Lượng nước biển và lượng muối nó chứa là hai đại lượng tỉ lệ thuận

Cách 2: + Tính khối lượng muối có trong 1 l nước biển

+ Tính khối lượng muối có trong 12 l nước biển

 

Lời giải chi tiết

Cách 1:

Gọi khối lượng muối có trong 12 l nước biển là x (g) (x > 0)

Vì lượng nước biển và lượng muối nó chứa là hai đại lượng tỉ lệ thuận nên theo tính chất của hai đại lượng tỉ lệ thuận, ta có: \(\frac{{175}}{5} = \frac{x}{{12}} \Rightarrow x = \frac{{175.12}}{5} = 420\)

Vậy khối lượng muối có trong 12 l nước biển là 420 g.

Cách 2:

Khối lượng muối có trong 1 l nước biển là: 175:5 = 35 (g)

Khối lượng muối có trong 12 l nước biển là: 35.12 = 420 (g)

 


Bài 4 trang 63 Toán lớp 7 Tập 1:

Cứ 12 phút, một chiếc máy làm được 27 sản phẩm. Để làm được 45 sản phẩm như thế thì chiếc máy đó cần bao nhiêu phút?

Lời giải chi tiết

Cách 1:

Gọi thời gian để làm 45 sản phẩm là x (phút) (x > 0)

Vì thời gian làm và số sản phẩm làm được là hai đại lượng tỉ lệ thuận nên theo tính chất của hai đại lượng tỉ lệ thuận, ta có: \(\frac{{12}}{{27}} = \frac{x}{{45}} \Rightarrow x = \frac{{12.45}}{{27}} = 20\)

Vậy thời gian để làm 45 sản phẩm là 20 phút

Cách 2:

Thời gian để làm được 1 sản phẩm là: 12:27 = \(\frac{4}{9}\) (phút)

Thời gian để làm được 45 sản phẩm là: 45 . \(\frac{4}{9}\) = 20 (phút)


Bài 5 trang 63 Toán lớp 7 Tập 1:

Để làm thuốc ho người ta ngâm chanh đào với mật ong và đường phèn theo tỉ lệ: Cứ 0,5 kg chanh đào thì cần 250 g đường phèn và 0,5 l mật ong. Với tỉ lệ đó, nếu muốn ngâm 2,5 kg chanh đào thì cần bao nhiêu ki-lô-gam đường phèn và bao nhiêu lít mật ong?

Lời giải chi tiết

Đổi 250 g = 0,25 kg

Gọi khối lượng đường phèn và thể tích mật ong cần là x ( kg) , y (lít) (x,y > 0)

Vì khối lượng chanh và đường phèn là hai đại lượng tỉ lệ thuận; khối lượng chanh và thể tích mật ong là hai đại lượng tỉ lệ thuận nên theo tính chất của hai đại lượng tỉ lệ thuận, ta có:

\(\begin{array}{l}\frac{{0,5}}{{0,25}} = \frac{{2,5}}{x} \Rightarrow x = \frac{{0,25.2,5}}{{0,5}} = 1,25\\\frac{{0,5}}{{0,5}} = \frac{{2,5}}{y} \Rightarrow y = \frac{{2,5.0,5}}{{0,5}} = 2,5\end{array}\)

Vậy cần 1,25 kg đường phèn và 2,5 lít mật ong.


Bài 6 trang 63 Toán lớp 7 Tập 1:

 

Theo công bố chính thức từ hãng sản xuất, chiếc xe ô tô của cô Hạnh có mức tiêu thụ nhiên liệu như sau:

  • 9,9 lít /100 km trên đường hỗn hợp
  • 13,9 lít / 100 km trên đường đô thị;
  • 7,5 lít / 100 km trên đường cao tốc.

a) Theo thông số trên, nếu trong bình xăng của chiếc xe ô tô đó có 65 lít xăng thì cô Hạnh đi được bao nhiêu ki-lô-mét (làm tròn kết quả đến hàng đơn vị) khi cô đi trên đường đô thị? Đường hỗn hợp? Đường cao tốc?

b) Để đi quãng đường 400 km trên đường đô thị, trong bình xăng chiếc xe ô tô của cô Hạnh cần có tối thiểu bao nhiêu lít xăng?

c) Để đi quãng đường 300 km trên đường hỗn hợp và 300 km trên đường cao tốc, trong bình xăng chiếc xe ô tô của cô Hạnh cần có tối thiểu bao nhiêu lít xăng?

Lời giải chi tiết

a) Khi cô Hạnh đi trên đường đô thị thì cô đi được:

65 : 13,9 . 100 \( \approx \) 468 (km)

Khi cô Hạnh đi trên đường hỗn hợp thì cô đi được:

65 : 9,9 . 100 \( \approx \) 657 (km)

Khi cô Hạnh đi trên đường cao tốc thì cô đi được:

65 : 7,5 . 100 \( \approx \) 867 (km)

b) Để đi quãng đường 400 km trên đường đô thị, chiếc bình xăng ô tô của Hạnh cần có tối thiểu:

400 : 100 . 13,9 = 55,6 (lít)

c) Để đi quãng đường 300 km trên đường hỗn hợp và 300 km trên đường cao tốc, trong bình xăng chiếc xe ô tô của cô Hạnh cần có tối thiểu:

300: 100. 9,9 + 300 : 100 . 7,5 = 52,2 (lít)

 

Giải bài tập Toán 7 – Cánh Diều

 

Giải Toán lớp 7 Tập 2

 

 

 

 

Bài 7: Đại lượng tỉ lệ thuận – Toán 7 – Cánh Diều

Bài 7: Đại lượng tỉ lệ thuận – Toán 7 – Cánh Diều