Bài 6: Trường hợp đồng dạng thứ nhất của tam giác – Chương 8 – Toán 8 – Cánh Diều

Bài 6: Trường hợp đồng dạng thứ nhất của tam giác – Chương 8 – Toán 8 – Cánh Diều

Bài 6: Trường hợp đồng dạng thứ nhất của tam giác – Chương 8 – Toán 8 – Cánh Diều

 

1. Trường hợp đồng dạng thứ nhất: Cạnh – cạnh – cạnh

Nếu ba cạnh của tam giác này tỉ lệ với ba cạnh của tam giác kia thì hai tam giác đó đồng dạng với nhau.

\(\begin{array}{l}\Delta ABC,\Delta A’B’C’,\frac{{A’B’}}{{AB}} = \frac{{B’C’}}{{BC}} = \frac{{A’C’}}{{AC}}\\ \Rightarrow \Delta A’B’C’ \backsim \Delta ABC\,(c.c.c)\end{array}\)

2. Trường hợp đồng dạng thứ nhất của tam giác vuông

Nếu cạnh huyền và một cạnh góc vuông của tam giác vuông này tỉ lệ với cạnh huyền và một cạnh góc vuông của tam giác vuông kia thì hai tam giác vuông đó đồng dạng.

\(\Delta ABC,\Delta MNP,\frac{{MN}}{{AB}} = \frac{{NP}}{{BC}},\widehat M = \widehat A = {90^0}\)

\( \Rightarrow \Delta MNP \backsim \Delta A

 


 

Khởi động trang 74 Toán 8 Tập 2: Mảnh đất trồng hoa của nhà bạn Hằng có dạng hình tam giác với độ dài các cạnh là 2 m, 3 m, 4 m. Bạn Hằng vẽ tam giác ABC có độ dài các cạnh là 1 cm, 1,5 cm, 2 cm để mô tả hình ảnh mảnh vườn đó (Hình 56a). Bạn Khôi nói rằng tam giác ABC nhỏ quá và vẽ tam giác A’B’C’ có độ dài các cạnh là 2 cm, 3 cm, 4 cm (Hình 56b).

Hai tam giác A’B’C’ và ABC có đồng dạng hay không?

 

Lời giải:

Sau bài học này, chúng ta sẽ giải quyết được câu hỏi trên như sau:

Ta có, \[\frac{{A’B’}}{{AB}} = \frac{2}{1} = 2;\,\,\frac{{B’C’}}{{BC}} = \frac{4}{2} = 2;\,\,\frac{{C’A’}}{{CA}} = \frac{3}{{1,5}} = 2\]

Do đó \[\frac{{A’B’}}{{AB}} = \frac{{B’C’}}{{BC}} = \frac{{C’A’}}{{CA}}.\]

Xét ∆A’B’C’ và ∆ABC có: \[\frac{{A’B’}}{{AB}} = \frac{{B’C’}}{{BC}} = \frac{{C’A’}}{{CA}}.\]

Suy ra ∆A’B’C’ ᔕ ∆ABC (c.c.c).


 

Hoạt động 1 trang 74 Toán 8 Tập 2:

 

Quan sát Hình 56 và so sánh các tỉ số: \(\frac{{A’B’}}{{AB}};\,\,\frac{{A’C’}}{{AC}};\,\,\frac{{B’C’}}{{BC}}\).

 

Lời giải:

\(\begin{array}{l}\frac{{A’B’}}{{AB}} = \frac{2}{4} = \frac{1}{2}\\\frac{{A’C’}}{{AC}} = \frac{3}{6} = \frac{1}{2}\\\frac{{B’C’}}{{BC}} = \frac{4}{8} = \frac{1}{2}\end{array}\)

Ta thấy \(\frac{{A’B’}}{{AB}} = \frac{{A’C’}}{{AC}} = \frac{{B’C’}}{{BC}}\)

 

LT1

Cho tam giác ABC có trọng tâm G. Gọi A’, B’, C’ lần lượt là trung điểm của AG, BG, CG. Chứng minh \(\Delta A’B’C’ \backsim\Delta ABC\).

Phương pháp giải:

Tính tỉ số giữa các cạnh rồi chứng minh đồng dạng bằng trường hợp đồng dạng thứ nhất.

Lời giải:

 

Vì A’, B’, C’ lần lượt là trung điểm của AG, BG, CG nên A’B’, B’C’, A’C’ lần lượt là đường trung bình của các tam giác AGB, BGC, AGC.

Khi đó: \(\frac{{A’B’}}{{AB}} = \frac{{B’C’}}{{BC}} = \frac{{A’C’}}{{AC}} = \frac{1}{2}\)

Xét tam giác A’B’C’ và tam giác ABC có:

\(\frac{{A’B’}}{{AB}} = \frac{{B’C’}}{{BC}} = \frac{{A’C’}}{{AC}} = \frac{1}{2}\)

Vậy \(\Delta A’B’C’ \backsim\Delta ABC\) (c-c-c)


 

HĐ2

Cho hai tam giác ABC và A’B’C’ lần lượt vuông tại A và A’ (Hình 60) sao cho \(AB = 3,\,\,BC = 5,\,\,A’B’ = 6,\,\,B’C’ = 10\).

a) Tính CA và C’A’

b) So sánh các tỉ số \(\frac{{A’B’}}{{AB}};\,\,\frac{{A’C’}}{{AC}};\,\,\frac{{B’C’}}{{BC}}\)

c) Hai tam giác A’B’C’ và ABC có đồng dạng với nhau hay không?

Lời giải:

 

a) Xét tam giác ABC vuông tại A ta có:

\(A{B^2} + A{C^2} = B{C^2}\) (Định lý Pytago)

\(\begin{array}{l} \Rightarrow {3^2} + C{A^2} = {5^2}\\ \Leftrightarrow C{A^2} = {5^2} – {3^2}\\ \Leftrightarrow C{A^2} = 16\\ \Leftrightarrow CA = 4\end{array}\)

Xét tam giác A’B’C’ vuông tại A’ ta có:

\(A’B{‘^2} + A’C{‘^2} = B’C{‘^2}\) (Định lý Pytago)

\(\begin{array}{l} \Rightarrow {6^2} + A’C{‘^2} = {10^2}\\ \Leftrightarrow A’C{‘^2} = {10^2} – {6^2}\\ \Leftrightarrow A’C{‘^2} = 64\\ \Leftrightarrow A’C’ = 8\end{array}\)

b) Ta có:

\(\begin{array}{l}\frac{{A’B’}}{{AB}} = \frac{6}{3} = 2\\\frac{{B’C’}}{{BC}} = \frac{{10}}{5} = 2\\\frac{{C’A’}}{{CA}} = \frac{8}{4} = 2\end{array}\)

Ta thấy \(\frac{{A’B’}}{{AB}} = \frac{{A’C’}}{{AC}} = \frac{{B’C’}}{{BC}}\).

c) Xét tam giác A’B’C’ và tam giác ABC có: \(\frac{{A’B’}}{{AB}} = \frac{{A’C’}}{{AC}} = \frac{{B’C’}}{{BC}}\)

\( \Rightarrow \Delta A’B’C’ \backsim\Delta ABC\) (c-c-c)

 

LT2

Trong Hình 64, chứng minh tam giác \(CDM\) vuông tại \(M\).

Hình 64

Phương pháp giải:

– Chứng minh \(\Delta ADM \backsim\Delta BMC\)

– Suy ra \(\widehat {AMD} = \widehat {BCM}\) và \(\widehat {ADM} = \widehat {BMC}\)

– Dựa vào tính chất tổng hai góc nhọn trong tam giác vuông bằng \(90^\circ \) ta chứng minh \(\widehat {AMD} + \widehat {BMC} = 90^\circ \)

– Suy ra \(\widehat {DMC} = 90^\circ \) hay tam giác \(CDM\) vuông tại \(M\).

Lời giải:

 

Vì \(\frac{{AD}}{{BM}} = \frac{2}{3},\,\,\frac{{DM}}{{MC}} = \frac{3}{{4,5}} = \frac{2}{3}\) nên \(\frac{{AD}}{{BM}} = \frac{{DM}}{{MC}}\).

Xét hai tam giác \(ADM\) và \(BMC\) có \(\widehat {MAD} = \widehat {CBM} = 90^\circ \) và \(\frac{{AD}}{{BM}} = \frac{{DM}}{{MC}}\) nên \(\Delta{ADM} \backsim \Delta{BMC}\).

Suy ra \(\widehat {AMD} = \widehat {BCM}\) và \(\widehat {ADM} = \widehat {BMC}\).

Xét tam giác \(ADM\) vuông tại A có:

\(\begin{array}{l}\,\,\,\,\,\,\,\,\widehat {AMD} + \widehat {ADM} = 90^\circ \\ \Rightarrow \widehat {AMD} + \widehat {BMC} = 90^\circ \end{array}\)

Mà ta có:

\(\begin{array}{l}\,\,\,\,\,\widehat {AMD} + \widehat {DMC} + \widehat {CMB} = 180^\circ \\ \Rightarrow 90^\circ + \widehat {DMC} = 180^\circ \\ \Rightarrow \widehat {DMC} = 90^\circ \end{array}\)

Vậy tam giác \(CDM\) vuông tại \(M\).

 


 

Bài 1 trang 78 Toán 8 Tập 2:

Quan sát Hình 65 và chỉ ra những cặp tam giác đồng dạng:

 

Lời giải

Xét tam giác ABC và tam giác IKH có:

\(\frac{{AB}}{{IK}} = \frac{{AC}}{{IH}} = \frac{{BC}}{{KH}} = \frac{1}{2}\)

\( \Rightarrow \Delta ABC \backsim\Delta IKH\) (c-c-c)

Xét tam giác DEG và tam giác MNP có:

\(\frac{{DE}}{{MN}} = \frac{{DG}}{{MP}} = \frac{{EG}}{{KH}} = \frac{1}{2}\)

\( \Rightarrow \Delta DEG \backsim\Delta MNP\) (c-c-c)


 

Bài 2 trang 78 Toán 8 Tập 2:

Cho hai tam giác ABC và MNP có \(AB = 2,BC = 5,CA = 6,MN = 4,NP = 10,PM = 12\).

Hãy viết các cặp góc tương ứng bằng nhau của hai tam giác trên và giải thích kết quả.

 

Lời giải

Ta thấy:

\(\begin{array}{l}\frac{{AB}}{{MN}} = \frac{2}{4} = \frac{1}{2}\\\frac{{BC}}{{NP}} = \frac{5}{{10}} = \frac{1}{2}\\\frac{{CA}}{{PM}} = \frac{6}{{12}} = \frac{1}{2}\\ \Rightarrow \frac{{AB}}{{MN}} = \frac{{BC}}{{NP}} = \frac{{CA}}{{PM}}\end{array}\)

Xét tam giác ABC và tam giác MNP có: \(\frac{{AB}}{{MN}} = \frac{{BC}}{{NP}} = \frac{{CA}}{{PM}}\)

\( \Rightarrow \Delta ABC \backsim\Delta MNP\) (c-c-c)

 

\( \Rightarrow \widehat {ABC} = \widehat {MNP},\,\,\widehat {ACB} = \widehat {MPN},\,\,\widehat {BAC} = \widehat {NMP}\)


 

Bài 3 trang 78 Toán 8 Tập 2:

Bác Hùng vẽ bản đồ trong đó dùng ba đỉnh A, B, C của tam giác ABC lần lượt mô tả ba vị trí M, N, P trong thực tiễn. Bác Duy cũng vẽ một bản đồ, trong đó dùng ba đỉnh A’, B’, C’ của tam giác A’B’C’ lần lượt mô tả ba vị trí M, N, P đó. Tỉ lệ bản đồ mà bác Hùng và bác Duy vẽ lần lượt là 1 : 1 000 000 và 1 : 500 000. Chứng minh \(\Delta A’B’C’\; \backsim\Delta ABC\) và tính tỉ số đồng dạng.

Lời giải

Theo giả thiết, ta có:

\(\Delta ABC \backsim\Delta MNP\) theo hệ số tỉ lệ là \(\frac{1}{{1\,000\,000}}\)

\(\Delta A’B’C’ \backsim\Delta MNP\) theo hệ số tỉ lệ là \(\frac{1}{{1\,500\,000}}\).

Từ đó ta có:

\(\frac{{AB}}{{MN}} = \frac{{BC}}{{NP}} = \frac{{CA}}{{PM}} = \frac{1}{{1\,000\,000}}\)

Suy ra \( AB = \frac{1}{{1\,000\,000}}MN,\) \(BC = \frac{1}{{1\,000\,000}}NP,\) \(CA = \frac{1}{{1\,000\,000}}PM\)

 

và \(\frac{{A’B’}}{{MN}} = \frac{{B’C’}}{{NP}} = \frac{{C’A’}}{{PM}} = \frac{1}{{1\,500\,000}}\)

Suy ra \( A’B’ = \frac{1}{{1\,500\,000}}MN,\) \(B’C’ = \frac{1}{{1\,500\,000}}NP,\) \(C’A’ = \frac{1}{{1\,500\,000}}PM\)

Ta thấy

\(\frac{{A’B’}}{{AB}} = \frac{{\frac{1}{{1\,500\,000}}MN}}{{\frac{1}{{1\,000\,000}}MN}} = \frac{2}{3}\)

\(\frac{{B’C’}}{{BC}} = \frac{{\frac{1}{{1\,500\,000}}NP}}{{\frac{1}{{1\,000\,000}}NP}} = \frac{2}{3}\)

\(\frac{{C’A’}}{{CA}} = \frac{{\frac{1}{{1\,500\,000}}PM}}{{\frac{1}{{1\,000\,000}}PM}} = \frac{2}{3}\)

Suy ra \( \frac{{A’B’}}{{AB}} = \frac{{B’C’}}{{BC}} = \frac{{C’A’}}{{CA}} \)

Suy ra \(\Delta A’B’C’\; \backsim\Delta ABC\) (c-c-c) với tỉ số đồng dạng là \(\frac{2}{3}\).


 

Bài 4 trang 78 Toán 8 Tập 2:

Cho tam giác ABC và điểm O nằm trong tam giác. Các điểm M, N, P lần lượt thuộc các tia OA, OB, OC sao cho \(\frac{{OA}}{{OM}} = \frac{{OB}}{{ON}} = \frac{{OC}}{{OP}} = \frac{2}{3}\). Chứng minh \(\Delta ABC \backsim\Delta MNP\).

 

Phương pháp giải – Xem chi tiết

Sử dụng các định lý Thales để chứng minh các tỉ số bằng nhau.

Chứng minh hai tam giác đồng dạng theo trường hợp thứ nhất.

 

Lời giải

Xét tam giác MON có: \(\frac{{OA}}{{OM}} = \frac{{OB}}{{ON}} = \frac{2}{3}\) nên \(AB//MN\) (Định lý Thales đảo)

\( \Rightarrow \frac{{AB}}{{MN}} = \frac{2}{3}\) (Hệ quả của định lý Thales)

Chứng minh tương tự ta được \(\frac{{BC}}{{NP}} = \frac{2}{3};\,\,\frac{{AC}}{{MP}} = \frac{2}{3}\)

\( \Rightarrow \frac{{AB}}{{MN}} = \frac{{BC}}{{NP}} = \frac{{AC}}{{MP}}\)

\( \Rightarrow \Delta ABC \backsim\Delta MNP\) (c-c-c)

 


 

Bài 5 trang 78 Toán 8 Tập 2:

Bạn Hoa vẽ trên giấy một tam giác ABC và đoạn thẳng MN với các kích thước như Hình 66. Bạn Hoa đố bạn Thanh vẽ điểm P thỏa mãn \(\widehat {PMN} = \widehat {ACB},\,\,\widehat {PNM} = \widehat {BAC}\) mà không sử dụng thước đo góc. Em hãy giúp bạn Thanh sử dụng thước thẳng (có chia khoảng milimét) và compa để vẽ điểm P và giải thích kết quả tìm được.

Lời giải

Vì tổng ba góc trong một tam giác bằng \(180^\circ \) nên nếu \(\widehat {PMN} = \widehat {ACB},\,\,\widehat {PNM} = \widehat {BAC}\) thì \(\widehat {MPN} = \widehat {CBA}\)

Ta cần \(\Delta ABC \backsim\Delta NPM\)

Khi đó \(\frac{{AB}}{{NP}} = \frac{{BC}}{{PM}} = \frac{{AC}}{{NM}}\) hay \(\frac{8}{{NP}} = \frac{6}{{PM}} = \frac{3}{{4,5}} = \frac{2}{3}\)

Ta có: \(\frac{8}{{NP}} = \frac{2}{3} \Rightarrow NP = 8.3:2 = 12cm\)

\(\frac{6}{{MP}} = \frac{2}{3} \Rightarrow MP = 6.3:2 = 9cm\)

Qua điểm N vẽ cung tròn tâm N, bán kính 12cm.

Qua điểm M vẽ cung tròn tâm M, bán kính 9cm.

Giao điểm của hai cung tròn vừa vẽ là điểm P. Ta có NP = 12cm và MP = 9cm.

Vậy Thanh chỉ cần thước thẳng và compa để xác định được điểm P thỏa mãn đề bài.


 

 

Bài 6 trang 78 Toán 8 Tập 2:

Cho các hình bình hành ABCD và BMNP như ở Hình 67. Chứng minh:

a) \(\frac{{BM}}{{BA}} = \frac{{BP}}{{BC}}\)

b) \( \Delta{MNP} \backsim \Delta{CBA}\)

Phương pháp giải – Xem chi tiết

a) Dựa vào định lí Thales suy ra được các tỉ số bằng nhau.

b) Chứng minh MP // AC, suy ra các tỉ số bằng nhau của tam giác PBM và tam giác CBA

BMNP là hình bình hành suy ra các tỉ số bằng nhau của tam giác PBM và tam giác CBA

Từ đó ta suy ra điều phải chứng minh.

 

Lời giải

a) Vì ABCD và BMNP là hình bình hành nên \(MN//BP\) và \(AD//BC \Rightarrow MN//AD\)

Xét tam giác ABD có \(AD//MN \Rightarrow \frac{{BM}}{{BA}} = \frac{{BN}}{{BD}}\) (1) (Định lý Thales)

Tương tự ta chứng minh được \(NP//DC \Rightarrow \frac{{BN}}{{BD}} = \frac{{BP}}{{BC}}\)(2)

Từ (1) và (2) ta có \(\frac{{BM}}{{BA}} = \frac{{BP}}{{BC}}\).

b) Ta có \(\frac{{BM}}{{BA}} = \frac{{BP}}{{BC}} \Rightarrow MP//AC\)(Định lý Thales đảo)

 

\( \Rightarrow \Delta PBM \backsim\Delta CBA\) (c-c-c) (3)

Vì BMNP là hình bình hành nên ta có \(\frac{{PB}}{{MN}} = \frac{{BM}}{{NP}} = \frac{{MP}}{{PM}} = 1\)

\( \Rightarrow \Delta PBM \backsim\Delta MNP\) (c-c-c) (4)

Từ (3) và (4) ta có \(\Delta MNP \backsim\Delta CBA\).

 

 

 

Giải Toán 8 Cánh diều Tập 1

Giải Toán 8 Cánh diều Tập 2

 

 

Bài 6: Trường hợp đồng dạng thứ nhất của tam giác – Chương 8 – Toán 8 – Cánh Diều

Bài 6: Trường hợp đồng dạng thứ nhất của tam giác – Chương 8 – Toán 8 – Cánh Diều

Bài 6: Trường hợp đồng dạng thứ nhất của tam giác – Chương 8 – Toán 8 – Cánh Diều