Bài 6: Trường hợp bằng nhau thứ ba của tam giác: góc – cạnh – góc – Toán 7 – Cánh Diều

Bài 6: Trường hợp bằng nhau thứ ba của tam giác: góc – cạnh – góc – Toán 7 – Cánh Diều

 

Trường hợp bằng nhau thứ ba của tam giác: góc- cạnh – góc (g.c.g)

Nếu 1 cạnh và 2 góc kề của tam giác này bằng 1 cạnh và 2 góc kề của tam giác kia thì hai tam giác đó bằng nhau.

 


 

HĐ 2

Cho hai tam giác ABCA’B’C’ (Hình 57) có: \(\widehat A = \widehat {A’} = 60^\circ \), AB = A’B’ = 3 cm, \(\widehat B = \widehat {B’} = 45^\circ \). Bằng cách đếm số ô vuông, hãy so sánh BCB’C’. Từ đó có thể kết luận được hai tam giác ABCA’B’C’ bằng nhau hay không?

 

Phương pháp giải:

Đếm số ô vuông của cạnh BCB’C’ rồi xem hai tam giác ABCA’B’C’ có bằng nhau không.

Lời giải chi tiết:

BC = B’C’ = 4 (đường chéo của 4 ô vuông).

Tam giác ABC và tam giác A’B’C’ có: BC = B’C’, AB = A’B’, \(\widehat B = \widehat {B’}\).

Vậy \(\Delta ABC = \Delta A’B’C’\)(c.g.c)

 

LT – VD 1

Cho hai tam giác ABCA’B’C’ thỏa mãn: BC = B’C’ = 3 cm, \(\widehat B = \widehat {B’} = 60^\circ ,\widehat C = 50^\circ ,\widehat {A’} = 70^\circ \). Hai tam giác ABCA’B’C’ có bằng nhau không? Vì sao?

Phương pháp giải:

Ta so sánh hai tam giác ABCA’B’C’.

Lời giải chi tiết:

 

Tổng ba góc trong một tam giác bằng 180°. Vậy trong tam giác A’B’C’ có \(\widehat {C’} = 180^\circ – 70^\circ – 60^\circ = 50^\circ \).

Xét hai tam giác ABC và A’B’C’ có:

\(\widehat B = \widehat {B’} = 60^\circ ;\)

BC = B’C’ ( = 3 cm)

\(\widehat C = \widehat {C’} = 50^\circ \)

Vậy \(\Delta ABC = \Delta A’B’C’\)(g.c.g)

 

LT – VD 2

Giải thích bài toán ở phần mở đầu.

Phương pháp giải:

Chứng minh tam giác ABC bằng tam giác ABD theo trường hợp góc cạnh góc.

Nếu một cạnh và hai góc liền kề cạnh đó của tam giác này bằng một cạnh và hai góc liền kề tương ứng của tam giác kia thì hai tam giác này bằng nhau.

Lời giải chi tiết:

 

Xét hai tam giác ABCABD có: \(\widehat {CAB} = \widehat {DAB} = 60^\circ ,\widehat {ABC} = \widehat {ABD} = 45^\circ \), AB chung.

Vậy \(\Delta ABC = \Delta ABD\) (g.c.g).

Suy ra AC = AD BC = BD ( 2 cạnh tương ứng)


 

Bài 1 trang 91 Toán lớp 7 Tập 2:

Cho hai tam giác ABCA’B’C’ thỏa mãn: AB = A’B’, \(\widehat A = \widehat {A’},\widehat C = \widehat {C’}\). Hai tam giác ABCA’B’C’ có bằng nhau không? Vì sao?

 

Lời giải chi tiết

 

Vì \(\widehat A = \widehat {A’},\widehat C = \widehat {C’}\)mà tổng ba góc trong một tam giác bằng 180° nên \(\widehat B = \widehat {B’}\).

Xét hai tam giác ABCA’B’C’ có: \(\widehat A = \widehat {A’}\), AB = A’B’, \(\widehat B = \widehat {B’}\).

Vậy \(\Delta ABC = \Delta A’B’C’\)(g.c.g)


 

Bài 2 trang 91 Toán lớp 7 Tập 2:

Cho Hình 65AM = BN, \(\widehat A = \widehat B\). Chứng minh: OA = OB, OM = ON.

 

 

Lời giải chi tiết

Ta có: \(\widehat A = \widehat B\)

Mà 2 góc này ở vị trí so le trong nên AM // BN

\(\Rightarrow \widehat M = \widehat N\)(2 góc so le trong).

Xét hai tam giác AOMBON có: \(\widehat A = \widehat B\), AM = BN, \(\widehat M = \widehat N\).

Vậy \(\Delta AOM = \Delta BON\) (g.c.g)

Do đó OA = OB, OM = ON. (2 cạnh tương ứng).


 

Bài 3 trang 91 Toán lớp 7 Tập 2:

Cho Hình 66 có \(\widehat N = \widehat P = 90^\circ ,\widehat {PMQ} = \widehat {NQM}\). Chứng minh MN = QP, MP = QN.

 

Lời giải chi tiết

Ta có: tổng ba góc trong một tam giác bằng 180° và \(\widehat N = \widehat P = 90^\circ ,\widehat {PMQ} = \widehat {NQM}\) nên \(\widehat {PQM} = \widehat {NMQ}\).

Xét hai tam giác MNQQPM có:

\(\widehat {NQM}=\widehat {PMQ}\)

MQ chung

\(\widehat {NMQ}=\widehat {PQM}\)

Vậy \(\Delta MNQ = \Delta QPM\)(g.c.g). Do đó MN = QP, MP = QN ( 2 cạnh tương ứng)


 

Bài 4 trang 91 Toán lớp 7 Tập 2:

Cho Hình 67 có \(\widehat {AHD} = \widehat {BKC} = 90^\circ ,DH = CK,\widehat {DAB} = \widehat {CBA}\). Chứng minh AD = BC.

 

Lời giải chi tiết

Ta có: \(\widehat {DAB} = \widehat {CBA}\)

Mà \(\widehat {DAB} +\widehat {HAD} =180^0; \widehat {CBA}= \widehat {KBC}\) (2 góc kề bù)

\(\Rightarrow \widehat {HAD} = \widehat {KBC}\)

Mà tổng ba góc trong tam giác bằng 180° và \(\widehat {AHD} = \widehat {BKC} = 90^\circ ,\widehat {HAD} = \widehat {KBC}\) nên \(\widehat {ADH} = \widehat {BCK}\).

Xét tam giác AHD và tam giác BKC có:

\(\widehat {AHD} = \widehat {BKC}\);

 

HD = KC;

\(\widehat {ADH} = \widehat {BCK}\).

Vậy \(\Delta AHD = \Delta BKC\)(g.c.g) nên AD = BC ( 2 cạnh tương ứng)


 

Bài 5 trang 91 Toán lớp 7 Tập 2:

 

Cho tam giác ABC có \(\widehat B > \widehat C\). Tia phân giác góc BAC cắt cạnh BC tại điểm D.

a) Chứng minh \(\widehat {ADB} < \widehat {ADC}\).

b) Kẻ tia Dx nằm trong góc ADC sao cho \(\widehat {ADx} = \widehat {ADB}\). Giả sử tia Dx cắt cạnh AC tại điểm E. Chứng minh: \(\Delta ABD = \Delta AED,AB < AC\).

 

Lời giải chi tiết

 

a) Ta có: \(\widehat {BAD} = \widehat {CAD}\)(vì AD là phân giác của góc BAC).

Mà \(\widehat B > \widehat C\)nên \(\widehat B + \widehat {BAD} > \widehat C + \widehat {CAD}\).

Tổng ba góc trong một tam giác bằng 180° nên:

\(\begin{array}{l}\widehat B + \widehat {BAD} > \widehat C + \widehat {CAD}\\ \to 180^\circ – (\widehat B + \widehat {BAD}) < 180^\circ – (\widehat C + \widehat {CAD})\\ \to \widehat {ADB} < \widehat {ADC}\end{array}\)

 

b) Xét hai tam giác ADB và tam giác ADE có:

\(\widehat {ADB} = \widehat {ADE}\);

AD chung;

\(\widehat {BAD} = \widehat {EAD}\).

Vậy \(\Delta ABD = \Delta AED\) (g.c.g)

Trong một tam giác, cạnh đối diện với góc lớn hơn thì lớn hơn.

Trong tam giác ABC có \(\widehat B > \widehat C\) nên AC > AB hay AB < AC (AB là cạnh đối diện với góc C, AC là cạnh đối diện với góc B).


 

Bài 6 trang 91 Toán lớp 7 Tập 2:

 

Cho \(\Delta ABC = \Delta MNP\). Tia phân giác của góc BACNMP lần lượt cắt các cạnh BCNP tại D, Q. Chứng minh AD = MQ.

 

Lời giải chi tiết

 

Ta có: \(\Delta ABC = \Delta MNP\) nên theo tính chất 2 tam giác bằng nhau, ta có:

\(\begin{array}{l}\widehat A = \widehat M,\widehat B = \widehat N,\widehat C = \widehat P\\AB = MN,BC = NP,AC = NP.\end{array}\)

ADMQ lần lượt là phân giác của góc BACNMP nên \(\widehat {BAD} = \widehat {NMQ} = \dfrac{1}{2}\widehat {BAC} = \dfrac{1}{2}\widehat {NMP}\).

Xét hai tam giác ABDMNQ có:

\(\widehat {BAD} = \widehat {NMQ}\);

 

AB = MN;

\(\widehat B = \widehat N\).

Vậy \(\Delta ABD = \Delta MNQ\) (g.c.g) nên AD = MQ ( 2 cạnh tương ứng)

 

Giải bài tập Toán 7 – Cánh Diều

 

Giải Toán lớp 7 Tập 2

 

 

 

Bài 6: Trường hợp bằng nhau thứ ba của tam giác: góc – cạnh – góc – Toán 7 – Cánh Diều

Bài 6: Trường hợp bằng nhau thứ ba của tam giác: góc – cạnh – góc – Toán 7 – Cánh Diều