Bài 10: Số nguyên tố Hợp số – Toán 6 – Cánh Diều

Bài 10: Số nguyên tố Hợp số – Toán 6 – Cánh Diều

Bài 10: Số nguyên tố Hợp số – Toán 6 – Cánh Diều

 

I. Số nguyên tố và hợp số

1. Số nguyên tố

– Số nguyên tố là số tự nhiên lớn hơn \(1,\) chỉ có \(2\) ước \(1\) và chính nó.

Ví dụ : Ư\((13) = \{ 13;1\} \) nên \(13\) là số nguyên tố.

Cách kiểm tra 1 số là số nguyên tố:

Để kết luận số a là số nguyên tố \(\left( {a > 1} \right),\)ta làm như sau:

Bước 1: Tìm số nguyên tố lớn nhất \(b\)\({b^2} < a\).

Bước 2: Lấy \(a\) chia cho các số nguyên tố từ 2 đến số nguyên tố \(b\), nếu \(a\) không chia hết cho số nào thì \(a\) là số nguyên tố.

2. Hợp số

Hợp số là số tự nhiên lớn hơn \(1,\)nhiều hơn \(2\) ước.

Ví dụ: số \(15\)\(4\) ước là \(1;3;5;15\) nên \(15\) là hợp số.

Lưu ý:

+) Số 0 và số 1 không là số nguyên tố cũng không là hợp số.

+) Kiểm tra một số \(a\) là hợp số: Sử dụng dấu hiệu chia hết để tìm một ước của \(a\) khác 1 và \(a\).

II. Phân tích một số ra thừa số nguyên tố

1. Cách tìm một ước nguyên tố của một số

Để tìm một ước nguyên tố của \(a\) ta có thể làm như sau:

Bước 1: Chia \(a\) cho các số nguyên tố theo thứ tự tăng dần \(2,3,5,7,11,13,…\)

Bước 2: Số chia trong phép chia hết đầu tiên là một ước của \(a\)

Ví dụ:

Tìm ước nguyên tố của 91:

Theo các dấu hiệu chia hết cho 2, 3 và 5 thì 91 không chia hết cho 2 , cho 3 và cho 5.

Ta chia 91 cho số nguyên tố tiếp theo:

Ta lấy 91:7=13. Vì thế 7 là một ước nguyên tố của 91.

2. Phân tích một số ra thừa số nguyên tố

Phân tích một số tự nhiên lớn hơn \(1\) ra thừa số nguyên tố là viết số đó dưới dạng một tích các thừa số nguyên tố.

– Viết các thừa số nguyên tố theo thứ tự từ bé đến lớn, tích các thừa số giống nhau dưới dạng lũy thừa.

Sơ đồ cây:

Bước 1: Phân tích số n thành tích của hai số bất kì khác 1 và chính nó.

Bước 2: Tiếp tục phân tích ước thứ nhất và ước thứ hai thành tích của hai số bất kì khác 1 và chính nó.

Bước 3: Cứ như vậy đến khi nào xuất hiện số nguyên tố thì dừng lại.

Bước 4: Số n bằng tích của các số cuối cùng của mỗi nhánh.

Sơ đồ cột:

Chia số \(n\) cho một số nguyên tố (xét từ nhỏ đến lớn ), rồi chia thương tìm được cho một số nguyên tố (cũng xét từ nhỏ đến lớn), cứ tiếp tục như vậy cho đến khi thương bằng \(1.\)

Ví dụ: Số \(76\) được phân tích như sau:

\(76\)

\(2\)

\(38\)

\(2\)

\(19\)

\(19\)

\(1\)

Như vậy \(76 = {2^2}.19\)

CÁC DẠNG TOÁN VỀ SỐ NGUYÊN TỐ, HỢP SỐ

I. Viết số nguyên tố hoặc hợp số từ những số cho trước

Phương pháp:

+ Căn cứ vào định nghĩa số nguyên tố và hợp số.

+ Căn cứ vào các dấu hiệu chia hết.

+ Có thể dùng bảng số nguyên tố để xác định một số (nhỏ hơn 1000) là số nguyên tố hay không.

Ví dụ:

Tìm các số * để được số nguyên tố $\overline {*1} $:

Dấu * có thể nhận các giá trị \(\left\{ {1;2;3;4;5;6;7;8;9} \right\}\)

+) Với $a=1$ ta có \(11\) là số nguyên tố => Thỏa mãn.

+) Với $a=2$ ta có \(21\) có các ước \(1;3;7;21\) nên \(21\) là hợp số=> Loại.

+) Với $a=3$ ta có \(31\) là số nguyên tố => Thỏa mãn.

+) Với $a=4$ ta có \(41\) chỉ có hai ước là \(1;41\) nên \(41\) là số nguyên tố => Thỏa mãn.

+) Với $a=5$ ta có \(51\) có các ước \(1;3;17;51\) nên \(51\) là hợp số. Loại

+) Với $a=6$ ta có \(61\) là số nguyên tố => Thỏa mãn.

+) Với $a=7$ ta có \(71\) là số nguyên tố => Thỏa mãn.

+) Với $a=8$ ta có \(81\) có các ước \(1;3;9;27;81\) nên \(81\) là hợp số. Loại.

+) Với $a=9$ ta có \(91\) là có các ước \(1;7;13;91\) nên \(91\) là hợp số. Loại

Vậy các số nguyên tố là: $11,31,41,61,71$.

II. Chứng minh một số là số nguyên tố hay hợp số.

Phương pháp:

+ Để chứng minh một số là số nguyên tố, ta chứng minh số đó không có ước nào khác $1$ và chính nó.

+ Để chững minh một số là hợp số, ta chỉ ra rằng tồn tại một ước của nó khác $1$ và khác chính nó. Nói cách khác, ta chứng minh số đó có nhiều hơn hai ước.

Ví dụ:

a) $5$ là số nguyên tố vì nó chỉ có hai ước là $1$ và $5$.

b) $12$ là hợp số vì nó có nhiều hơn hai ước. Cụ thể 12 có các ước là: $1; 2; 3; 4; 6; 12$


Câu hỏi khởi động trang 41 Toán lớp 6 Tập 1: Bác Vĩnh mua 17 cuốn sổ và 34 chiếc bút để làm quà tặng. Bác Vĩnh muốn chia đều 17 cuốn sổ thành các gói và cũng muốn chia đều 34 chiếc bút thành các gói.

 

Bác Vĩnh có bao nhiêu cách chia những cuốn sổ thành các gói? Có bao nhiêu cách chia những chiếc bút thành các gói?

Lời giải:

+) Để tìm số cách chia những cuốn sổ thành các gói đều nhau, ta tìm các ước của 17 bằng cách lần lượt thực hiện phép chia 17 cho các số tự nhiên từ 1 đến 17, các phép chia hết là:

17 : 1 = 17 và 17 : 17 = 1

Vậy có 2 cách chia những cuốn sách thành các gói đều nhau:

– Cách 1: Để 1 gói gồm 17 cuốn

– Cách 2: Chia làm 17 gói, mỗi gói 1 cuốn sổ.

+) Để tìm số cách chia những chiếc bút bi thành các gói đều nhau, ta tìm ước của 34 bằng cách thực hiện phép chia 34 cho các số tự nhiên từ 1 đến 34, các phép chia hết là:

34 : 1 = 34; 34 : 2 = 17; 34 : 17 = 2; 34 : 34 = 1

Vậy có 4 cách chia những chiếc bút thành các gói đều nhau:

Cách 1: Chia thành 1 gói 34 chiếc.

Cách 2: Chia thành 2 gói, mỗi gói 17 chiếc.

Cách 3: Chia thành 17 gói, mỗi gói 2 chiếc.

Cách 4: Chia thành 34 gói, mỗi gói 1 chiếc.


Hoạt động 1 trang 41 Toán lớp 6 Tập 1:

a) Tìm các ước của mỗi số sau: 2, 3, 4, 5, 6, 7, 17, 34.

b) Trong các số trên, những số nào có hai ước, những số nào có nhiều hơn hai ước?

Lời giải:

a) Các ước của 2 là: 1; 2

Các ước của 3 là: 1; 3

Các ước của 4 là: 1; 2; 4

Các ước của 5 là: 1; 5

Các ước của 6 là: 1; 2; 3; 6

Các ước của 7 là: 1; 7

Các ước của 17 là: 1; 17

Các ước của 34 là: 1; 2; 17; 34.

b)

Các số 2, 3, 5, 7, 17 chỉ có hai ước là 1 và chính nó. Các số đó được gọi là số nguyên tố.

Các số 4, 6, 34 có nhiều hơn hai ước. Các số đó được gọi là hợp số.


Luyện tập 1 trang 41 Toán lớp 6 Tập 1: Cho các số 11, 29, 35, 38. Trong các số đó:

a) Số nào là số nguyên tố? Vì sao?

b) Số nào là hợp số? Vì sao?

Lời giải:

a) + Số 11 là số nguyên tố vì nó lớn hơn 1, chỉ có hai ước là 1 và 11.

+ Số 29 là số nguyên tổ vì nó lớn hơn 1, chỉ có hai ước là 1 và 29.

b) + Ta có số 35 có chữ số tận cùng là 5 nên nó chia hết cho 5

Do đó số 35 là hợp số vì ngoài hai ước là 1 và 35, nó còn có ít nhất một ước nữa là 5.

+ Ta có số 38 có chữ số tận cùng là 8 nên nó chia hết cho 2

Do đó số 38 là hợp số vì ngoài hai ước là 1 và 38, nó còn có ít nhất một ước nữa là 2.


 

Luyện tập 2 trang 42 Toán lớp 6 Tập 1: Tìm các ước nguyên tố của: 23, 24, 26, 27.

Lời giải:

Để tìm các ước nguyên tố của một số thì ta tìm các ước của số đó trước, rồi xét xem trong các ước đó, ước nào là số nguyên tố thì số đó được gọi là ước nguyên tố của số đã cho.

+ Để tìm các ước của số 23 ta lấy 23 lần lượt chia cho các số tự nhiên từ 1 đến 23. Các phép chia hết là: 23 : 1 = 23; 23 : 23 = 1.

Do đó các ước của số 23 là: 1; 23, trong hai ước này ta thấy số 23 là số nguyên tố (vì nó lớn hơn 1 và chỉ có hai ước là 1 và chính nó)

Vậy ước nguyên tố của số 23 là 23.

(Cách giải khác: Vì 23 là số nguyên tố nên ước nguyên tố của 23 là 23.)

+ Để tìm các ước của số 24 ta lấy 24 lần lượt chia cho các số tự nhiên từ 1 đến 24. Các phép chia hết là:

24 : 1 = 24; 24 : 2 = 12; 24 : 3 = 8; 24 : 4 = 6; 24: 6 = 4; 24 : 8 = 3; 24 : 12 = 2; 24 : 24 = 1

Do đó các ước của số 24 là: 1; 2; 3; 4; 6; 8; 12; 24, trong đó chỉ có 2 và 3 là số nguyên tố (vì nó lớn hơn 1 và chỉ có 2 ước là 1 và chính nó)

Vậy các ước nguyên tố của số 24 là: 2 và 3.

+ Để tìm các ước của số 26 ta lấy 26 lần lượt chia cho các số tự nhiên từ 1 đến 26. Các phép chia hết là:

26 : 1 = 26; 26 : 2 = 13; 26 : 13 = 2; 26 : 26 = 1

Do đó các ước của số 26 là: 1; 2; 13; 26, trong đó chỉ có số 2 và 13 là số nguyên tố (vì nó lớn hơn 1 và chỉ có 2 ước là 1 và chính nó)

Vậy các ước nguyên tố của 26 là: 2 và 13

+ Để tìm các ước của số 27 ta lấy 27 lần lượt chia cho các số tự nhiên từ 1 đến 27. Các phép chia hết là:

27 : 1 = 27; 27 : 3 = 9; 27 : 9 = 3; 27 : 27 = 1

Do đó các ước của số 27 là: 1; 3; 9; 27, trong đó chỉ có số 3 là số nguyên tố (vì nó lớn hơn 1 và chỉ có 2 ước là 1 và chính nó)

Vậy ước nguyên tố của 27 là: 3.


 

Luyện tập 3 trang 42 Toán lớp 6 Tập 1: Viết hai số chỉ có ước nguyên tố là 3.

Lời giải:

Theo bài Luyện tập 2 (Trang 42/SGK), số chỉ có ước nguyên tố là 3 là 27

Ta cũng có thể tìm được các số khác thỏa mãn yêu cầu bài toán, ví dụ như các số: 3; 9; 81; 243;…

Nhận xét: Các số tự nhiên có dạng 3n với n là số tự nhiên khác 0 đều là các số thỏa mãn yêu cầu bài toán.


 

Bài 1 trang 42 Toán lớp 6 Tập 1: Cho các số 36, 37, 69, 75. Trong các số đó:

a) Số nào là số nguyên tố? Vì sao?

b) Số nào là hợp số? Vì sao?

Lời giải:

a) Số 37 là số nguyên tố vì nó lớn hơn 1, chỉ có hai ước là 1 và 37.

b) Ta có

+ Số 36 có chữ số tận cùng là 6 nên nó chia hết cho 2.

Do đó số 36 là hợp số vì ngoài hai ước là 1 và 36, nó còn có ít nhất một ước nữa là 2.

+ Số 69 có tổng các chữ số là 6 + 9 = 15 chia hết cho 3 nên số 69 chia hết cho 3.

Do đó số 69 là hợp số vì ngoài hai ước là 1 và 69 thì nó còn có ít nhất một ước nữa là 3.

+ Số 75 có chữ số tận cùng là 5 nên nó chia hết cho 5.

Do đó 75 là hợp số vì ngoài hai ước là 1 và 75, nó còn có ít nhất một ước nữa là 5.


 

Bài 2 trang 42 Toán lớp 6 Tập 1: Hãy chỉ ra một số nguyên tố lớn hơn 40 và nhỏ hơn 50.

Lời giải:

Các số tự nhiên lớn hơn 40 và nhỏ hơn 50 là: 41; 42; 43; 44; 45; 46; 47; 48; 49.

Trong các số trên, ta thấy có số 41, 43 và 47 là hai số nguyên tố vì nó các số lớn hơn 1 và chỉ có 2 ước là 1 và chính nó.

Do đó đề bài yêu cầu các em chỉ ra mộtsố nguyên tố lớn hơn 40 và nhỏ hơn 50 thì các em chọn 1 trong hai câu trả lời sau:

+ Một số nguyên tố lớn hơn 40 và nhỏ hơn 50 là: 41 (vì 41 lớn hơn 1 và chỉ có hai ước là 1 và 41).

+ Một số nguyên tố lớn hơn 40 và nhỏ hơn 50 là: 43 (vì 43 lớn hơn 1 và chỉ có hai ước là 1 và 43).

+ Một số nguyên tố lớn hơn 40 và nhỏ hơn 50 là: 47 (vì 47 lớn hơn 1 và chỉ có hai ước là 1 và 47).


 

Bài 3 trang 42 Toán lớp 6 Tập 1: Mỗi phát biểu sau đúng hay sai? Vì sao?

a) Một số tự nhiên không là số nguyên tố thì sẽ là hợp số.

b) Mọi số nguyên tố đều là số lẻ.

c) 3 là ước nguyên tố của 6 nên 3 cũng là ước nguyên tố của 18.

d) Mọi số tự nhiên đều có ước nguyên tố.

Lời giải:

a) Phát biểu: “Một số tự nhiên không là số nguyên tố thì sẽ là hợp số” là phát biểu sai vì số tự nhiên 0 và số tự nhiên 1 không là số nguyên tố và cũng không là hợp số. (Theo Lưu ý Trang 41/SGK).

b)  Phát biểu : “Mọi số nguyên tố đều là số lẻ.” là sai vì số 2 là số nguyên tố chẵn. (Do 2 chỉ có 2 ước là 1 và chính nó).

c) Phát biểu: “3 là ước nguyên tố của 6 nên 3 cũng là ước nguyên tố của 18” là đúng vì cả 18 và 6 đều chia hết cho số nguyên tố 3, hơn nữa 18 = 6 . 3 nên 3 là ước nguyên tố của 6 và cũng là ước nguyên tố của 18.

d) Phát biểu: “Mọi số tự nhiên đều có ước nguyên tố” là sai vì số 1 chỉ có ước tự nhiên là 1 và nó không phải là số nguyên tố.


 

Bài 4 trang 42 Toán lớp 6 Tập 1: Tìm các ước nguyên tố của: 36, 49, 70.

Lời giải:

Để tìm các ước nguyên tố của một số thì ta tìm các ước của số đó trước, rồi xét xem trong các ước đó, ước nào là số nguyên tố thì số đó được gọi là ước nguyên tố của số đã cho.

+ Để tìm các ước của số 36, ta lấy 36 lần lượt chia cho các số tự nhiên từ 1 đến 36. Các phép chia hết là:

36 : 1 = 36; 36 : 2 = 18; 36 : 3 = 12; 36 : 4 = 9; 36 : 6 = 6; 36 : 9 = 4; 36 : 12 = 3; 36 : 18 = 2; 36 : 36 = 1

Do đó các ước của số 36 là: 1; 2; 3; 4; 6; 9; 12; 18; 36, trong đó có số 2; 3 là các số nguyên tố.

Vậy các ước nguyên tố của 36 là: 2; 3.

+ Để tìm các ước của số 49, ta lấy 49 lần lượt chia cho các số tự nhiên từ 1 đến 49. Các phép chia hết là:

49 : 1= 49; 49 : 7 = 7; 49 : 49 = 1

Do đó các ước của số 49 là: 1; 7; 49, trong đó có số 7 là số nguyên tố.

Vậy ước nguyên tố của 49 là: 7.

+ Để tìm các ước của số 70, ta lấy 70 lần lượt chia cho các số tự nhiên từ 1 đến 70.

Ta tìm được các ước của 70 là: 1; 2; 5; 7; 10; 14; 35; 70, trong đó có các số 2; 5; 7 là các số nguyên tố.

Vậy các ước nguyên tố của 70 là: 2; 5; 7.


 

Bài 5 trang 42 Toán lớp 6 Tập 1: Hãy viết ba số:

a) Chỉ có ước nguyên tố là 2.

b) Chỉ có ước nguyên tố là 5

Lời giải:

a) Các số chỉ có ước nguyên tố là 2 là các bội của 2 và không nhận ước nguyên tố nào khác ngoài 2.

Do đó ta có 3 số chỉ có ước nguyên tố là 2 là: 2; 4; 8.

(Ta có thể chứng minh được các số thỏa mãn yêu cầu bài toán có dạng 2n, do đó các em có thể đưa ra bộ ba số tùy ý khác thỏa mãn yêu cầu).

b) Các số chỉ có ước nguyên tố là 5 là các bội của 5 và không nhận ước nguyên tố nào khác ngoài 5.

Do đó ta có 3 số chỉ có ước nguyên tố là 5 là: 5; 25; 125.

(Ta có thể chứng minh được các số thỏa mãn yêu cầu bài toán có dạng 5n, do đó các em có thể đưa ra bộ ba số tùy ý khác thỏa mãn yêu cầu).


Có thể em chưa biết – Bài 1 trang 43 Toán lớp 6 Tập 1:

Sàng Ơ-ra-tô-xten (Eratosthenes)

Để tìm số nguyên tố nhỏ hơn 50, ta làm như sau:

+) Viết tất cả các số tự nhiên từ 2 đến 50.

+) Khoanh tròn số 2, gạch tất cả các số là bội của 2 mà lớn hơn 2:

 

+) Khoanh tròn số 3, gạch tất cả các số là bội của 3 mà lớn hơn 3

+) Khoanh tròn số 5, gạch tất cả các số là bội của 5 mà lớn hơn 5.

+) Khoanh tròn số 7, gạch tất cả các số là bội của 7 mà lớn hơn 7.

+) Các số không bị gạch trong bảng đều là số nguyên tố.

Các số nguyên tố nhỏ hơn 50 là: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47.

Số nguyên tố nhỏ nhất là số 2 và đó là số nguyên tố chẵn duy nhất.

Bằng cách tương tự như thế, ta có thể lọc ra tất cả các số nguyên tố nhỏ hơn một số tự nhiên n cho trước. Cách làm đó được gọi là sàng Ơ-ra-tô-xten

Em hãy sử dụng sàng Ơ-ra-tô-xten để tìm tất cả các số nguyên tố nhỏ hơn 100.

Lời giải:

Ta tiếp tục thực hiện với các số từ 51 đến 100 bằng cách:

Viết các số từ 51 đến 100, gạch các số là bội của 2, 3, 5, 7

 

Ta tìm thêm được các số nguyên tố từ 51 đến 100 là: 53, 59, 61, 67, 71, 73, 79, 83, 89, 97.

Vậy bằng sàng Ơ-ra-tô-xten ta tìm được các số nguyên tố nhỏ hơn 100 là: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97.

 

 

 

Giải bài tập Toán lớp 6 Tập 1 Cánh diều

Chương 1: Số tự nhiên

Top 9 Đề thi Toán lớp 6 Giữa kì 1 có đáp án (sách mới)

Chương 2: Số nguyên

Chương 3: Hình học trực quan

Top 30 Đề thi Toán lớp 6 Học kì 1 có đáp án (sách mới)

Giải bài tập Toán lớp 6 Tập 2 – Cánh diều

Chương 4. Một số yếu tố thống kê và xác suất

Chương 5. Phân số và số thập phân

Chương 6. Hình học phẳng

 

 

 

Bài 10: Số nguyên tố Hợp số – Toán 6 – Cánh Diều

Bài 10: Số nguyên tố Hợp số – Toán 6 – Cánh Diều

 

 

Bài 10: Số nguyên tố Hợp số – Toán 6 – Cánh Diều