Bài 1: Định lí Thalès trong tam giác – Chương 8 – Toán 8 – Cánh Diều

Bài 1: Định lí Thalès trong tam giác – Chương 8 – Toán 8 – Cánh Diều

Bài 1: Định lí Thalès trong tam giác – Chương 8 – Toán 8 – Cánh Diều

 

1. Đoạn thẳng tỉ lệ

Hai đoạn thẳng AB và CD gọi là tỉ lệ với hai đoạn thẳng MN và PQ nếu có tỉ lệ thức: ABCD=MNPQ

2. Định lí Thalès

Nếu một đường thẳng song song với một cạnh của tam giác và cắt hai cạnh còn lại thì nó định ra trên hai cạnh đó những đoạn thẳng tương ứng tỉ lệ.

ΔABC,MN//BC(M∈AB,N∈AC)⇒AMAB=ANAC;AMMB=ANNC;BMAB=NCAC

3. Định lí Thalès đảo

Nếu một đường thẳng cắt hai cạnh của một tam giác và định ra trên hai cạnh này những đoạn thẳng tương ứng tỉ lệ thì đường thẳng đó song song với cạnh còn lại của tam giác.

ΔABC,M∈AB,N∈AC,AMMB=ANNC⇒MN//BC

4. Hệ quả của định lí Thalès

Nếu một đường thẳng song song với một cạnh của tam giác và cắt hai cạnh còn lại thì nó tạo thành một tam giác mới có ba cạnh tương ứng tỉ lệ với ba cạnh của tam giác đã cho.

ΔABC,MN//BC(M∈AB,N∈AC)⇒AMAB=ANAC=MNBC

Chú ý. Hệ quả vẫn đúng cho trường hợp đường thẳng d song song với một cạnh của tam giác và cắt phần kéo dài của hai cạnh còn lại.


 

Khởi động trang 52 Toán 8 Tập 2: Bác Dư muốn cắt một thanh sắt (Hình 1) thành 5 phần bằng nhau nhưng bác lại không có thước để đo.

 

Bác Dư có thể thực hiện điều đó bằng cách nào?

Lời giải:

Sau bài học này, chúng ta có thể giải quyết câu hỏi trên như sau:

 

Bác Dư có thể làm như sau:

– Đặt thanh sắt trên mặt phẳng sân và coi thanh sắt như đoạn thẳng AB.

– Vẽ tia Ax và lấy một đoạn dây không dãn nào đó rồi đặt liên tiếp trên tia Ax, bắt đầu từ điểm A, năm đoạn thẳng AM, MN, NP, PQ, QC có độ dài đều bằng độ dài đoạn dây.

– Trong tam giác ABC, kẻ đường thẳng qua M song song với cạnh BC, cắt cạnh AB tại I.

Theo định lí Thalès, ta có \[\frac{{AI}}{{AB}} = \frac{{AM}}{{AC}} = \frac{1}{5}.\]

Do đó \[AI = \frac{1}{5}AB.\]

Dựa theo đoạn mẫu AI, bác Dư có thể cắt một thanh sắt thành năm phần bằng nhau.


 

Hoạt động 1 trang 52 Toán 8 Tập 2:

Cho hai đoạn thẳng AB = 2cm, CD = 3cm và hai đoạn thẳng MN = 4cm, PQ = 6cm. So sánh hai tỉ số \(\frac{{AB}}{{CD}},\,\,\frac{{MN}}{{PQ}}\).

 

Lời giải chi tiết

Ta có: \(\frac{{AB}}{{CD}} = \frac{2}{3}\) và \(\frac{{MN}}{{PQ}} = \frac{4}{6} = \frac{2}{3}\)

Vậy \(\frac{{AB}}{{CD}} = \frac{{MN}}{{PQ}}\).


 

Hoạt động 2 trang 53 Toán 8 Tập 2:

Quan sát Hình 3 và cho biết:

a) Đường thẳng \(d\) có song song với BC hay không?

b) Bằng cách đếm số ô vuông, dự đoán xem các tỉ số \(\frac{{AM}}{{MB}},\frac{{AN}}{{NC}}\) có bằng nhau hay không?

Lời giải chi tiết:

a) Quan sát hình ta thấy \(d\parallel BC\).

b) Ta thấy:

Độ dài AM là 2 lần cạnh của một ô vuông.

Độ dài MB là cạnh của một ô vuông.

\( \Rightarrow \frac{{AM}}{{MB}} = \frac{2}{1} = 2\)

Độ dài AN là 2 lần đường chéo của một ô vuông.

Độ dài NC là độ dài đường chéo của một ô vuông.

\( \Rightarrow \frac{{AN}}{{NC}} = \frac{2}{1} = 2\)

Vậy \(\frac{{AM}}{{MB}} = \frac{{AN}}{{NC}}\).

 

Luyện tập 1 trang 53 Toán 8 Tập 2:

Trong Hình 4, chứng tỏ rằng nếu \(MN\parallel BC\) thì \(\frac{{MB}}{{AB}} = \frac{{NC}}{{AC}}\).

 

Lời giải chi tiết:

Xét tam giác ABC với \(MN\parallel BC\), ta có \(\frac{{MB}}{{AB}} = \frac{{NC}}{{AC}}\) (định lý Thales).

 

Luyện tập 2 trang 53 Toán 8 Tập 2:

Cho tam giác ABC có G là trọng tâm. Đường thẳng qua G song song với BC lần lượt cắt AB, AC tại M, N. Chứng minh \( \frac{AM}{AB} = \frac{AN}{AC} = \frac{2}{3} \).

Phương pháp giải:

Sử dụng định lý Thales để chứng minh \( \frac{AM}{AB} = \frac{AN}{AC} = \frac{2}{3} \).

Lời giải chi tiết:

 

Gọi AD là đường trung tuyến của tam giác ABC (D \(\in\) BC)

Vì G là trọng tâm của tam giác ABC nên AG = \(\frac{2}{3}\) AD hay \(\frac{AG}{AD} =\frac{2}{3}\) .

Xét tam giác ABD với MG // BD, ta có:

\( \frac {AM}{AB} = \frac{AG}{AD} =\frac{2}{3}\) (Định lí Thales) (1)

Tương tự, xét

tam giác ADC với GN // DC, ta có:

\( \frac {AN}{AC} = \frac{AG}{AD} =\frac{2}{3}\) (Định lí Thales) (2)

Từ (1) và (2) suy ra \( \frac{AM}{AB} = \frac{AN}{AC} = \frac{2}{3} \) (đpcm).

Hoạt động 3 trang 54 Toán 8 Tập 2:

Trong Hình 7, cho AM = 1, MB = 2, AN = 1,5, NC = 3.

a) So sánh các tỉ số \(\frac{{AM}}{{MB}};\,\,\frac{{AN}}{{NC}}\).

b) Đường thẳng \(d\) (đi qua M, N) có song song với BC hay không?

Phương pháp giải:

a) Dựa vào số liệu đã cho, tính và so sánh các tỉ số.

b) Quan sát hình vẽ và cho biết đường thẳng \(d\) (đi qua M, N) có song song với BC hay không.

Lời giải chi tiết:

a) \(\frac{{AM}}{{MB}} = \frac{1}{2}\)

\(\frac{{AN}}{{AC}} = \frac{{1,5}}{3} = \frac{1}{2}\)

Vậy \(\frac{{AM}}{{MB}} = \frac{{AN}}{{NC}}\).

b) Qua B kẻ đường thẳng song song với đường thẳng d, cắt AC tại C’.

 

Xét ∆ABC’ với MN // BC’, ta có:

\( \frac{AM}{MB}=\frac{AN}{NC′}\) (định lí Thalès).

Mà theo câu a, \(\frac{{AM}}{{MB}} = \frac{{AN}}{{NC}}\) nên ta có \(\frac{{AN}}{{NC}} = \frac{AN}{NC′}\)

Suy ra NC = NC’ hay C và C’ là hai điểm trùng nhau.

Do đó C nằm trên đường thẳng đi qua B và song song với đường thẳng d.

Vậy đường thẳng d (đi qua M, N) song song với BC.

 

 

Luyện tập 3 trang 55 Toán 8 Tập 2:

 

Cho tam giác ABC vuông tại A có CA = 4, CB = 5. Giả sử M, N là hai điểm lần lượt nằm trên hai cạnh CA, CB sao cho CM = 1, CN = 1,25. Tính độ dài đoạn thẳng MN.

Phương pháp giải:

– Sử dụng định lý Thales đảo để chứng minh \(MN\parallel AB\).

– Chứng minh \(MN \bot AC\)

– Sử dụng định lý Pytago để tính độ dài cạnh MN.

Lời giải chi tiết:

 

Xét tam giác ABC có

\(\begin{array}{l}\frac{{CM}}{{CA}} = \frac{1}{4}\\\frac{{CN}}{{CB}} = \frac{{1,25}}{5} = \frac{1}{4}\\ \Rightarrow \frac{{CM}}{{CA}} = \frac{{CN}}{{CB}}\end{array}\)

\( \Rightarrow MN\parallel AB\) (Định lý Thales đảo)

Mà \(AB \bot AC\) nên \(MN \bot AC\) hay tam giác MNC vuông tại M

Xét tam giác MNC vuông tại M có: \(MC = 1,\,\,NC = 1,25\).

Theo định lý Pytago ta có:

\(\begin{array}{l}M{N^2} + M{C^2} = N{C^2}\\\,\,\,\,\,\,\,M{N^2} + {1^2} = 1,{25^2}\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,M{N^2} = 1,{25^2} – {1^2}\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,M{N^2} = 0,5625\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,MN = 0,75\end{array}\)

Vậy MN = 0,75.


 

Bài 1 trang 57 Toán 8 Tập 2: Cho tam giác ABC có AB = 4,5 cm; AC = 6 cm. Các điểm M, N lần lượt thuộc các cạnh AB, AC thoả mãn AM = 3 cm và MN // BC. Tính độ dài đoạn thẳng AN.

Lời giải:

Xét ∆ABC với MN // BC, ta có:

 (Hệ quả của định lí Thalès)

Suy ra \[\frac{3}{{4,5}} = \frac{{AN}}{6}\]

Do đó \[AN = \frac{{3 \cdot 6}}{{4,5}} = 4\left( {{\rm{cm}}} \right).\]

 


 

Bài 2 trang 57 Toán 8 Tập 2:

Cho hình thang ABCD \(\left( {AB\parallel CD} \right)\) có AB = 4cm, CD = 6cm. Đường thẳng d song song với hai đáy và cắt hai cạnh bên AD, BC của hình thang đó lần lượt tại M, N; cắt đường chéo AC tại P.

a) Chứng minh \(\frac{{AM}}{{MD}} = \frac{{BN}}{{NC}}\);

b) Tính độ dài các đoạn thẳng MP, PN, MN; biết rằng MD = 2MA.

 

Lời giải chi tiết

 

a) Vì \(d\parallel CD\) nên \(MP\parallel CD\)

Xét tam giác ADC với \(MP\parallel CD\) có: \(\frac{{AM}}{{MD}} = \frac{{AP}}{{PC}}\,\,\left( 1 \right)\) (Định lý Thales)

Vì \(d\parallel AB\) nên \(PN\parallel AB\)

Xét tam giác ABC với \(PN\parallel AB\) có: \(\frac{{BN}}{{NC}} = \frac{{AP}}{{PC}}\,\,\left( 2 \right)\) (Định lý Thales)

Từ (1) và (2) ta có \(\frac{{AM}}{{MD}} = \frac{{BN}}{{NC}}\).

 

b) Vì \(MD = 2MA\) nên \(\frac{{AM}}{{MD}} = \frac{1}{2} \Rightarrow \frac{{AM}}{{AD}} = \frac{1}{3}\)

Xét tam giác ADC với \(MP\parallel CD\) có: \(\frac{{AM}}{{AD}} = \frac{{MP}}{{DC}}\) (Hệ quả định lý Thales)

\( \Rightarrow \frac{{MP}}{{DC}} = \frac{1}{3} \Rightarrow MP = \frac{1}{3}DC = 2cm\)

Vì \(\frac{{AM}}{{AD}} = \frac{1}{3} \Rightarrow \frac{{AP}}{{AC}} = \frac{1}{3} \Rightarrow \frac{{PC}}{{CA}} = \frac{2}{3}\)

Xét tam giác ABC với \(PN\parallel AB\) có: \(\frac{{CP}}{{CA}} = \frac{{PN}}{{AB}}\) (Hệ quả định lý Thales)

\( \Rightarrow \frac{{PN}}{{AB}} = \frac{2}{3} \Rightarrow PN = \frac{2}{3}AB = \frac{8}{3}cm\)

Mà \(MN = MP + PM = 2 + \frac{8}{3} = \frac{{14}}{3}cm\).


 

Bài 3 trang 57 Toán 8 Tập 2:

Trong Hình 15, cho \(MN\parallel AB,\,\,NP\parallel BC\). Chứng minh \(MP\parallel AC\).

 

Lời giải chi tiết

Xét tam giác OAB có \(\frac{{OM}}{{MA}} = \frac{{ON}}{{NB}}\) (Định lý Thales)

Xét tam giác OBC có \(\frac{{OP}}{{PC}} = \frac{{ON}}{{NB}}\) (Định lý Thales)

Từ đó ta có \(\frac{{OM}}{{MA}} = \frac{{OP}}{{PC}}\).

Xét tam giác OAC với \(\frac{{OM}}{{MA}} = \frac{{OP}}{{PC}} \Rightarrow MP\parallel AC\) (Định lí Thales đảo).


 

Bài 4 trang 57 Toán 8 Tập 2:

Trong Hình 16, độ dài đoạn thẳng A’C’ mô tả chiều cao của một cái cây, đoạn thẳng AC mô tả một cái cọc (cây và cọc cùng vuông góc với đường thẳng đi qua ba điểm A’, A, B). Giả sử \(AC = 2m,\,\,AB = 1,5m,\,\,A’B = 4,5m\). Tính chiều cao của cây.

 

Lời giải chi tiết

\(\left. \begin{array}{l}AC \bot A’B\\A’C’ \bot A’B\end{array} \right\} \Rightarrow AC\parallel A’C’\)

Xét tam giác A’BC’ với \(AC\parallel A’C’\) có:

\(\frac{{AC}}{{A’C’}} = \frac{{BA}}{{BA’}}\) (Hệ quả của định lý Thales)

\( \Rightarrow \frac{{AC}}{{A’C’}} = \frac{{1,5}}{{4,5}} = \frac{1}{3} \Rightarrow A’C’ = 3AC = 6m\)

Vậy cây cao 6m.


 

Bài 5 trang 57 Toán 8 Tập 2:

Cho đoạn thẳng AB. Hãy trình bày cách chia đoạn thẳng AB thành ba đoạn thẳng bằng nhau mà không cần dùng thước đo.

 

Lời giải chi tiết

Lấy một điểm P nằm ngoài đoạn thẳng AB và nối AP, BP.

Trên đoạn thẳng AP lấy hai điểm M và N sao cho AM = MN = NP.

Khi đó \(\frac{{AM}}{{AP}} = \frac{1}{3};\,\,\frac{{AN}}{{AP}} = \frac{2}{3}\).

Kẻ các đoạn thẳng \(MC\parallel PB,\,\,ND\parallel PB\) với \(C,\,\,D \in AB\).

Theo hệ quả của định lý Thales trong tam giác APB thì \(\frac{{AM}}{{AP}} = \frac{{AC}}{{AB}} = \frac{1}{3}\) và \(\frac{{AN}}{{AP}} = \frac{{AD}}{{AB}} = \frac{2}{3}\).

Khi đó AC = CD = DB = \(\frac{1}{3}\)AB.

Vậy ta đã chia đoạn thẳng AB thành 3 phần bằng nhau mà không cần dùng thước đo.

Giải Toán 8 Cánh diều Tập 1

Giải Toán 8 Cánh diều Tập 2

 

 

Bài 1: Định lí Thalès trong tam giác – Chương 8 – Toán 8 – Cánh Diều

Bài 1: Định lí Thalès trong tam giác – Chương 8 – Toán 8 – Cánh Diều

Bài 1: Định lí Thalès trong tam giác – Chương 8 – Toán 8 – Cánh Diều